bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2024–01–14
five papers selected by
Sara Mingu, Johannes Gutenberg University



  1. Curr Opin Genet Dev. 2024 Jan 11. pii: S0959-437X(23)00130-2. [Epub ahead of print]84 102150
      Nuclear organization has emerged as a critical layer in the coordination of DNA repair activities. Distinct types of DNA lesions have notably been shown to relocate at the vicinity of nuclear pore complexes (NPCs), where specific repair pathways are favored, ultimately safeguarding genome integrity. Here, we review the most recent progress in this field, notably highlighting the increasingly diverse types of DNA structures undergoing repositioning, and the signaling pathways involved. We further discuss our growing knowledge of the molecular mechanisms underlying the choice of repair pathways at NPCs, and their conservation - or divergences. Intriguingly, a series of recent findings suggest that DNA metabolism may be coupled to NPC biogenesis and specialization, challenging our initial vision of these processes.
    DOI:  https://doi.org/10.1016/j.gde.2023.102150
  2. Sci Adv. 2024 Jan 12. 10(2): eadi7606
      Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins. We found that importin α1 binds a nuclear localization signal (NLS) at the far end of the HBV coat protein Cp183 carboxyl-terminal domain (CTD). This NLS is exposed to the capsid surface through a pore at the icosahedral quasi-sixfold vertex. Phosphorylation at serine-155, serine-162, and serine-170 promotes CTD compaction but does not affect the affinity for importin α1. The binding of 30 importin α1/β1 augments HBV capsid diameter to ~620 angstroms, close to the maximum size trafficable through the NPC. We propose that phosphorylation favors CTD externalization and prompts its compaction at the capsid surface, exposing the NLS to importins.
    DOI:  https://doi.org/10.1126/sciadv.adi7606
  3. PLoS Pathog. 2024 Jan 12. 20(1): e1011640
      Retroviral reverse transcription starts within the capsid and uncoating and reverse transcription are mutually dependent. There is still debate regarding the timing and cellular location of HIV's uncoating and reverse transcription and whether it occurs solely in the cytoplasm, nucleus or both. HIV can infect non-dividing cells because there is active transport of the preintegration complex (PIC) across the nuclear membrane, but Murine Leukemia Virus (MLV) is thought to depend on cell division for replication and whether MLV uncoating and reverse transcription is solely cytoplasmic has not been studied. Here, we used NIH3T3 and primary mouse dendritic cells to determine where the different stages of reverse transcription occur and whether cell division is needed for nuclear entry. Our data strongly suggest that in both NIH3T3 cells and dendritic cells (DCs), the initial step of reverse transcription occurs in the cytoplasm. However, we detected MLV RNA/DNA hybrid intermediates in the nucleus of dividing NIH3T3 cells and non-dividing DCs, suggesting that reverse transcription can continue after nuclear entry. We also confirmed that the MLV PIC requires cell division to enter the nucleus of NIH3T3 cells. In contrast, we show that MLV can infect non-dividing primary DCs, although integration of MLV DNA in DCs still required the viral p12 protein. Knockdown of several nuclear pore proteins dramatically reduced the appearance of integrated MLV DNA in DCs but not NIH3T3 cells. Additionally, MLV capsid associated with the nuclear pore proteins NUP358 and NUP62 during infection. These findings suggest that simple retroviruses, like the complex retrovirus HIV, gain nuclear entry by traversing the nuclear pore complex in non-mitotic cells.
    DOI:  https://doi.org/10.1371/journal.ppat.1011640
  4. Elife. 2024 Jan 08. pii: RP89835. [Epub ahead of print]12
      Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double-stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
    Keywords:  DDX19; Dbp5; Gle1; Mex67; S. cerevisiae; chromosomes; gene expression; mRNA export; tRNA export
    DOI:  https://doi.org/10.7554/eLife.89835
  5. Cells. 2023 Dec 29. pii: 71. [Epub ahead of print]13(1):
      Cellular nucleocytoplasmic trafficking is mediated by the importin family of nuclear transport proteins. The well-characterized importin alpha (IMPA) and importin beta (IMPB) nuclear import pathway plays a crucial role in the innate immune response to viral infection by mediating the nuclear import of transcription factors such as IRF3, NFκB, and STAT1. The nuclear transport of these transcription factors ultimately leads to the upregulation of a wide range of antiviral genes, including IFN and IFN-stimulated genes (ISGs). To replicate efficiently in cells, viruses have developed mechanisms to block these signaling pathways. One strategy to evade host innate immune responses involves blocking the nuclear import of host antiviral transcription factors. By binding IMPA proteins, these viral proteins prevent the nuclear transport of key transcription factors and suppress the induction of antiviral gene expression. In this review, we describe examples of proteins encoded by viruses from several different families that utilize such a competitive inhibition strategy to suppress the induction of antiviral gene expression.
    Keywords:  African swine fever virus; Ebola virus; coronavirus; flavivirus; hantavirus; hepatitis B virus; human immunodeficiency virus-1; immune evasion; importin alpha; innate immunity; interferon; vaccinia virus
    DOI:  https://doi.org/10.3390/cells13010071