bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2024–02–18
three papers selected by
Sara Mingu, Johannes Gutenberg University



  1. bioRxiv. 2024 Feb 04. pii: 2024.02.01.578318. [Epub ahead of print]
      ALS and FTD are complex neurodegenerative disorders that primarily affects motor neurons in the brain and spinal cord, and cortical neurons in the frontal lobe. Although the pathogenesis of ALS/FTD is unclear, recent research spotlights nucleocytoplasmic transport impairment, DNA damage, and nuclear abnormalities as drivers of neuronal death. In this study, we show that loss of nuclear envelope (NE) integrity is a key pathology associated with nuclear pore complex (NPC) injury in C9ORF72 mutant neurons. Importantly, we show that mechanical stresses generated by cytoskeletal forces on the NE can lead to NPC injury, loss of nuclear integrity, and accumulation of DNA damage. Importantly, we demonstrate that restoring NE tensional homeostasis, by disconnecting the nucleus from the cytoskeleton, can rescue NPC injury and reduce DNA damage in C9ORF72 mutant cells. Together, our data suggest that modulation of NE homeostasis and repair may represent a novel and promising therapeutic target for ALS/FTD.
    DOI:  https://doi.org/10.1101/2024.02.01.578318
  2. Aging Cell. 2024 Feb 13. e14095
      As the innermost lining of the vasculature, endothelial cells (ECs) are constantly subjected to systemic inflammation and particularly vulnerable to aging. Endothelial health is hence vital to prevent age-related vascular disease. Healthy ECs rely on the proper localization of transcription factors via nuclear pore complexes (NPCs) to govern cellular behavior. Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-associated EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player in vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of EC senescence. The loss of Nup93 in human ECs induces cell senescence and promotes the expression of inflammatory adhesion molecules, where restoring Nup93 protein in senescent ECs reverses features of endothelial aging. Mechanistically, we find that both senescence and loss of Nup93 impair endothelial NPC transport, leading to nuclear accumulation of Yap and downstream inflammation. Pharmacological studies indicate Yap hyperactivation as the primary consequence of senescence and Nup93 loss in ECs. Collectively, our findings indicate that the maintenance of endothelial Nup93 is a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism of EC senescence and vascular aging.
    Keywords:  Yap; endothelial cell inflammation; endothelial cell senescence; nuclear pore complex; vascular aging
    DOI:  https://doi.org/10.1111/acel.14095
  3. STAR Protoc. 2024 Feb 12. pii: S2666-1667(24)00041-8. [Epub ahead of print]5(1): 102876
      Here, we present a protocol for estimating nuclear transport parameters in single cells. We describe steps for performing four consecutive fluorescence recovery after photobleaching experiments, fitting the obtained data to an ordinary differential equations model, and statistical analysis of the fittings using a specialized R package. This protocol permits the estimation of import and export rates, nuclear or cytosolic fixed fractions, and total number of molecules. For complete details on the use and execution of this protocol, please refer to Durrieu et al.1.
    Keywords:  Biophysics; Microscopy; Model Organisms; Systems biology
    DOI:  https://doi.org/10.1016/j.xpro.2024.102876