bims-numges Biomed News
on Nucleotide metabolism and genome stability
Issue of 2021–09–26
forty-one papers selected by
Sean Rudd, Karolinska Institutet



  1. Mol Cell. 2021 Sep 18. pii: S1097-2765(21)00739-5. [Epub ahead of print]
      Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.
    Keywords:  53BP1; BRCA1; DNA damage response; DNA ligase III; PARP1, PARP inhibitor; drug resistance; replication fork; ssDNA gaps; vulnerabilities
    DOI:  https://doi.org/10.1016/j.molcel.2021.09.005
  2. Nucleic Acids Res. 2021 Sep 22. pii: gkab777. [Epub ahead of print]
      The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.
    DOI:  https://doi.org/10.1093/nar/gkab777
  3. Exp Mol Med. 2021 Sep 21.
      Endogenous DNA damage is a major contributor to mutations, which are drivers of cancer development. Bromodomain (BRD) proteins are well-established participants in chromatin-based DNA damage response (DDR) pathways, which maintain genome integrity from cell-intrinsic and extrinsic DNA-damaging sources. BRD proteins are most well-studied as regulators of transcription, but emerging evidence has revealed their importance in other DNA-templated processes, including DNA repair and replication. How BRD proteins mechanistically protect cells from endogenous DNA damage through their participation in these pathways remains an active area of investigation. Here, we review several recent studies establishing BRD proteins as key influencers of endogenous DNA damage, including DNA-RNA hybrid (R-loops) formation during transcription and participation in replication stress responses. As endogenous DNA damage is known to contribute to several human diseases, including neurodegeneration, immunodeficiencies, cancer, and aging, the ability of BRD proteins to suppress DNA damage and mutations is likely to provide new insights into the involvement of BRD proteins in these diseases. Although many studies have focused on BRD proteins in transcription, evidence indicates that BRD proteins have emergent functions in DNA repair and genome stability and are participants in the etiology and treatment of diseases involving endogenous DNA damage.
    DOI:  https://doi.org/10.1038/s12276-021-00673-0
  4. Cell Death Discov. 2021 Sep 22. 7(1): 260
      To maintain genomic stability, the mammalian cells has evolved a coordinated response to DNA damage, including activation of DNA repair and cell cycle checkpoint processes. Exonuclease 1 (EXO1)-dependent excision of DNA ends is important for the initiation of homologous recombination (HR) repair of DNA breaks, which is thought to play a key role in activating the ATR-CHK1 pathway to induce G2/M cell cycle arrest. But the mechanism is still not fully understood. Here, we report that ZGRF1 forms complexes with EXO1 as well as other repair proteins and promotes DNA repair through HR. ZGRF1 is recruited to DNA damage sites in a MDC1-RNF8-BRCA1 dependent manner. Furthermore, ZGRF1 is important for the recruitment of RPA2 to DNA damage sites and the following ATR-CHK1 mediated G2/M checkpoint in response to irradiation. ZGRF1 null cells show increased sensitivity to many DNA-damaging agents, especially PARPi and irradiation. Collectively,our findings identify ZGRF1 as a novel regulator of DNA end resection and G2/M checkpoint. ZGRF1 is a potential target of radiation and PARPi cancer therapy.
    DOI:  https://doi.org/10.1038/s41420-021-00633-7
  5. Nat Commun. 2021 Sep 20. 12(1): 5545
      The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that 'nucleotide proofreading' activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR.
    DOI:  https://doi.org/10.1038/s41467-021-25830-x
  6. J Am Chem Soc. 2021 Sep 23.
      To cope with unrepaired DNA lesions, cells are equipped with DNA damage tolerance mechanisms, including translesion synthesis (TLS). While TLS polymerases are well documented in facilitating replication across damaged DNA templates, it remains unknown whether TLS polymerases participate in transcriptional bypass of DNA lesions in cells. Herein, we employed the competitive transcription and adduct bypass assay to examine the efficiencies and fidelities of transcription across N2-alkyl-2'-deoxyguanosine (N2-alkyl-dG, alkyl = methyl, ethyl, n-propyl, or n-butyl) lesions in HEK293T cells. We found that N2-alkyl-dG lesions strongly blocked transcription and elicited CC → AA tandem mutations in nascent transcripts, where adenosines were misincorporated opposite the lesions and their adjacent 5' nucleoside. Additionally, genetic ablation of Pol η, but not Pol κ, Pol ι, or Pol ζ, conferred marked diminutions in the transcriptional bypass efficiencies of the N2-alkyl-dG lesions, which is exacerbated by codepletion of Rev1 in Pol η-deficient background. We also observed that the repair of N2-nBu-dG was not pronouncedly affected by genetic depletion of Pol η or Rev1. Hence, our results provided insights into transcriptional perturbations induced by N2-alkyl-dG lesions and expanded the biological functions of TLS DNA polymerases.
    DOI:  https://doi.org/10.1021/jacs.1c07374
  7. Genes Dev. 2021 Sep 23.
      Prior to initiation of DNA replication, the eukaryotic helicase, Mcm2-7, must be activated to unwind DNA at replication start sites in early S phase. To study helicase activation within origin chromatin, we constructed a conditional mutant of the polymerase α subunit Cdc17 (or Pol1) to prevent priming and block replication. Recovery of these cells at permissive conditions resulted in the generation of unreplicated gaps at origins, likely due to helicase activation prior to replication initiation. We used micrococcal nuclease (MNase)-based chromatin occupancy profiling under restrictive conditions to study chromatin dynamics associated with helicase activation. Helicase activation in the absence of DNA replication resulted in the disruption and disorganization of chromatin, which extends up to 1 kb from early, efficient replication origins. The CMG holohelicase complex also moves the same distance out from the origin, producing single-stranded DNA that activates the intra-S-phase checkpoint. Loss of the checkpoint did not regulate the progression and stalling of the CMG complex but rather resulted in the disruption of chromatin at both early and late origins. Finally, we found that the local sequence context regulates helicase progression in the absence of DNA replication, suggesting that the helicase is intrinsically less processive when uncoupled from replication.
    Keywords:  DNA replication; chromatin; genome stability; helicase
    DOI:  https://doi.org/10.1101/gad.348517.121
  8. PLoS Genet. 2021 Sep 20. 17(9): e1009816
      The NuA4 histone acetyltransferase complex, apart from its known role in gene regulation, has also been directly implicated in the repair of DNA double-strand breaks (DSBs), favoring homologous recombination (HR) in S/G2 during the cell cycle. Here, we investigate the antagonistic relationship of NuA4 with non-homologous end joining (NHEJ) factors. We show that budding yeast Rad9, the 53BP1 ortholog, can inhibit NuA4 acetyltransferase activity when bound to chromatin in vitro. While we previously reported that NuA4 is recruited at DSBs during the S/G2 phase, we can also detect its recruitment in G1 when genes for Rad9 and NHEJ factors Yku80 and Nej1 are mutated. This is accompanied with the binding of single-strand DNA binding protein RPA and Rad52, indicating DNA end resection in G1 as well as recruitment of the HR machinery. This NuA4 recruitment to DSBs in G1 depends on Mre11-Rad50-Xrs2 (MRX) and Lcd1/Ddc2 and is linked to the hyper-resection phenotype of NHEJ mutants. It also implicates NuA4 in the resection-based single-strand annealing (SSA) repair pathway along Rad52. Interestingly, we identified two novel non-histone acetylation targets of NuA4, Nej1 and Yku80. Acetyl-mimicking mutant of Nej1 inhibits repair of DNA breaks by NHEJ, decreases its interaction with other core NHEJ factors such as Yku80 and Lif1 and favors end resection. Altogether, these results establish a strong reciprocal antagonistic regulatory function of NuA4 and NHEJ factors in repair pathway choice and suggests a role of NuA4 in alternative repair mechanisms in situations where some DNA-end resection can occur in G1.
    DOI:  https://doi.org/10.1371/journal.pgen.1009816
  9. Biochem Soc Trans. 2021 Sep 21. pii: BST20210161. [Epub ahead of print]
      The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.
    Keywords:  DNA replication and recombination; cell cycle; genome integrity
    DOI:  https://doi.org/10.1042/BST20210161
  10. Front Genet. 2021 ;12 721864
      The maintenance of the mitochondrial genome depends on a suite of nucleus-encoded proteins, among which the catalytic subunit of the mitochondrial replicative DNA polymerase, Pol γα, plays a pivotal role. Mutations in the Pol γα-encoding gene, POLG, are a major cause of human mitochondrial disorders. Here we present a study of direct and functional interactions of Pol γα with the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB coordinates the activity of the enzymes at the DNA replication fork. However, the mechanism of this functional relationship is elusive, and no direct interactions between the replicative factors have been identified to date. This contrasts strikingly with the extensive interactomes of SSB proteins identified in other homologous replication systems. Here we show for the first time that mtSSB binds Pol γα directly, in a DNA-independent manner. This interaction is strengthened in the absence of the loop 2.3 structure in mtSSB, and is abolished upon preincubation with Pol γβ. Together, our findings suggest that the interaction between mtSSB and polymerase gamma holoenzyme (Pol γ) involves a balance between attractive and repulsive affinities, which have distinct effects on DNA synthesis and exonucleolysis.
    Keywords:  DNA polymerase gamma; intermolecular interactions; mitochondrial DNA replication; mitochondrial biogenesis; mitochondrial single-stranded DNA-binding protein
    DOI:  https://doi.org/10.3389/fgene.2021.721864
  11. Front Genet. 2021 ;12 730696
      In response to DNA double-strand breaks (DSBs), chromatin modifications orchestrate DNA repair pathways thus safeguarding genome integrity. Recent studies have uncovered a key role for heterochromatin marks and associated factors in shaping DSB repair within the nucleus. In this review, we present our current knowledge of the interplay between heterochromatin marks and DSB repair. We discuss the impact of heterochromatin features, either pre-existing in heterochromatin domains or de novo established in euchromatin, on DSB repair pathway choice. We emphasize how heterochromatin decompaction and mobility further support DSB repair, focusing on recent mechanistic insights into these processes. Finally, we speculate about potential molecular players involved in the maintenance or the erasure of heterochromatin marks following DSB repair, and their implications for restoring epigenome function and integrity.
    Keywords:  DNA double-strand break repair pathway choice; chromatin mobility; chromatin remodeling factors; heterochromatin; histone modifications; histone variants
    DOI:  https://doi.org/10.3389/fgene.2021.730696
  12. Nat Commun. 2021 Sep 22. 12(1): 5574
      In a trial of patients with high grade serous ovarian cancer (HGSOC), addition of the ATR inhibitor berzosertib to gemcitabine improved progression free survival (PFS) compared to gemcitabine alone but biomarkers predictive of treatment are lacking. Here we report a candidate biomarker of response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in HGSOC ovarian cancer. Patients with replication stress (RS)-high tumors (n = 27), defined as harboring at least one genomic RS alteration related to loss of RB pathway regulation and/or oncogene-induced replication stress achieve significantly prolonged PFS (HR = 0.38, 90% CI, 0.17-0.86) on gemcitabine monotherapy compared to those with tumors without such alterations (defined as RS-low, n = 30). However, addition of berzosertib to gemcitabine benefits only patients with RS-low tumors (gemcitabine/berzosertib HR 0.34, 90% CI, 0.13-0.86) and not patients with RS-high tumors (HR 1.11, 90% CI, 0.47-2.62). Our findings support the notion that the exacerbation of RS by gemcitabine monotherapy is adequate for lethality in RS-high tumors. Conversely, for RS-low tumors addition of berzosertib-mediated ATR inhibition to gemcitabine is necessary for lethality to occur. Independent prospective validation of this biomarker is required.
    DOI:  https://doi.org/10.1038/s41467-021-25904-w
  13. Nucleic Acids Res. 2021 Sep 22. pii: gkab796. [Epub ahead of print]
      DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.
    DOI:  https://doi.org/10.1093/nar/gkab796
  14. J Am Chem Soc. 2021 Sep 21.
      Protein O-GlcNAcylation is an essential and dynamic regulator of myriad cellular processes, including DNA replication and repair. Proteomic studies have identified the multifunctional nuclear protein HMGB1 as O-GlcNAcylated, providing a potential link between this modification and DNA damage responses. Here, we verify the protein's endogenous modification at S100 and S107 and found that the major modification site is S100, a residue that can potentially influence HMGB1-DNA interactions. Using synthetic protein chemistry, we generated site-specifically O-GlcNAc-modified HMGB1 at S100 and characterized biochemically the effect of the sugar modification on its DNA binding activity. We found that O-GlcNAc alters HMGB1 binding to linear, nucleosomal, supercoiled, cruciform, and interstrand cross-linked damaged DNA, generally resulting in enhanced oligomerization on these DNA structures. Using cell-free extracts, we also found that O-GlcNAc reduces the ability of HMGB1 to facilitate DNA repair, resulting in error-prone processing of damaged DNA. Our results expand our understanding of the molecular consequences of O-GlcNAc and how it affects protein-DNA interfaces. Importantly, our work may also support a link between upregulated O-GlcNAc levels and increased rates of mutations in certain cancer states.
    DOI:  https://doi.org/10.1021/jacs.1c06192
  15. J Am Chem Soc. 2021 Sep 24.
      Many DNA replication and DNA repair enzymes have been found to carry [4Fe4S] clusters. The major leading strand polymerase, DNA polymerase ε (Pol ε) from Saccharomyces cerevisiae, was recently reported to have a [4Fe4S] cluster located within the catalytic domain of the largest subunit, Pol2. Here the redox characteristics of the [4Fe4S] cluster in the context of that domain, Pol2CORE, are explored using DNA electrochemistry, and the effects of oxidation and rereduction on polymerase activity are examined. The exonuclease deficient variant D290A/E292A, Pol2COREexo-, was used to limit DNA degradation. While no redox signal is apparent for Pol2COREexo- on DNA-modified electrodes, a large cathodic signal centered at -140 mV vs NHE is observed after bulk oxidation. A double cysteine to serine mutant (C665S/C668S) of Pol2COREexo-, which lacks the [4Fe4S] cluster, shows no similar redox signal upon oxidation. Significantly, protein oxidation yields a sharp decrease in polymerization, while rereduction restores activity almost to the level of untreated enzyme. Moreover, the addition of reduced EndoIII, a bacterial DNA repair enzyme containing [4Fe4S]2+, to oxidized Pol2COREexo- bound to its DNA substrate also significantly restores polymerase activity. In contrast, parallel experiments with EndoIIIY82A, a variant of EndoIII, defective in DNA charge transport (CT), does not show restoration of activity of Pol2COREexo-. We propose a model in which EndoIII bound to the DNA duplex may shuttle electrons through DNA to the DNA-bound oxidized Pol2COREexo- via DNA CT and that this DNA CT signaling offers a means to modulate the redox state and replication by Pol ε.
    DOI:  https://doi.org/10.1021/jacs.1c07150
  16. Nat Commun. 2021 Sep 22. 12(1): 5572
      RPA is a master regulator of DNA metabolism and RPA availability acts as a rate-limiting factor. While numerous studies focused on the post-translational regulations of RPA for its functions, little is known regarding how RPA availability is controlled. Here we identify a novel lncRNA Discn as the guardian of RPA availability in stem cells. Discn is induced upon genotoxic stress and binds to neucleolin (NCL) in the nucleolus. This prevents NCL from translocation into nucleoplasm and avoids undesirable NCL-mediated RPA sequestration. Thus, Discn-NCL-RPA pathway preserves a sufficient RPA pool for DNA replication stress response and repair. Discn loss causes massive genome instability in mouse embryonic stem cells and neural stem/progenigor cells. Mice depleted of Discn display newborn death and brain dysfunctions due to DNA damage accumulation and associated inflammatory reactions. Our findings uncover a key regulator of DNA metabolism and provide new clue to understand the chemoresistance in cancer treatment.
    DOI:  https://doi.org/10.1038/s41467-021-25827-6
  17. J Cell Sci. 2021 Sep 23. pii: jcs.258435. [Epub ahead of print]
      Transcription is an essential process of DNA metabolism, yet it makes DNA more susceptible to DNA damage. THSC/TREX-2 is a conserved eukaryotic protein complex with a key role in mRNP biogenesis and maturation that prevents genome instability. One source of such instability is linked to transcription as shown in yeast and human cells, but the underlying mechanism and whether is universal is still unclear. To get further insight in the putative role of THSC/TREX-2 in genome integrity we have used Caenorhabditis elegans mutants of the THP-1 and DSS-1 members of THSC/TREX-2. These mutants show similar defective meiosis, DNA damage accumulation and activation of the DNA damage checkpoint. However, they differ regarding replication defects as determined by dUTP incorporation in the germline. Interestingly, this specific thp-1 phenotype can be partially rescued by overexpression of RNase H. Furthermore, both mutants show a mild increase in the H3S10P mark previously shown to be linked to DNA-RNA hybrid-mediated genome instability. These data support the view that both THSC/TREX-2 factors prevent transcription-associated DNA damage derived from DNA-RNA hybrid accumulation by separate means.
    Keywords:  C. elegans; DNA-RNA hybrids; Genome instability; Replication; THSC/TREX-2 complex
    DOI:  https://doi.org/10.1242/jcs.258435
  18. Geroscience. 2021 Sep 22.
      Persistent DNA damage (genotoxic stress) triggers signaling cascades that drive cells into apoptosis or senescence to avoid replicating a damaged genome. Sp1 has been found to play a role in double strand break (DSB) repair, and a link between Sp1 and aging has also been established, where Sp1 protein, but not RNA, levels decrease with age. Interestingly, inhibition ATM reverses the age-related degradation of Sp1, suggesting that DNA damage signaling is involved in senescence-related degradation of Sp1. Proteasomal degradation of Sp1 in senescent cells is mediated via sumoylation, where sumoylation of Sp1 on lysine 16 is increased in senescent cells. Taking into consideration our previous findings that Sp1 is phosphorylated by ATM in response to DNA damage and that proteasomal degradation of Sp1 at DSBs is also mediated by its sumoylation and subsequent interaction with RNF4, we investigated the potential contribution of Sp1's role as a DSB repair factor in mediating cellular senescence. We report here that Sp1 expression is decreased with a concomitant increase in senescence markers in response to DNA damage. Mutation of Sp1 at serine 101 to create an ATM phospho-null mutant, or mutation of lysine 16 to create a sumo-null mutant, prevents the sumoylation and subsequent proteasomal degradation of Sp1 and results in a decrease in senescence. Conversely, depletion of Sp1 or mutation of Sp1 to create an ATM phosphomimetic results in premature degradation of Sp1 and an increase in senescence markers. These data link a loss of genomic stability with senescence through the action of a DNA damage repair factor.
    Keywords:  DNA damage; SUMOylation; Senescence; Sp1; Ubiquitylation
    DOI:  https://doi.org/10.1007/s11357-021-00456-5
  19. Biochem Pharmacol. 2021 Sep 16. pii: S0006-2952(21)00383-X. [Epub ahead of print] 114767
      Homologous recombination repair (HRR) is crucial for genomic stability of cancer cells and is an attractive target in cancer therapy. Holliday junction (HJ) is a four-way DNA intermediate that performs an essential role in homology-directed repair. However, few studies about regulatory mechanisms of HJs have been reported. In this study, to better understand the biological effects of HJs, VE-822 was identified as an effective DNA HJ stabilizer to promote the assembly of HJs both in vitro and in cells. This compound could inhibit the HRR level, activate DNA-PKCS to trigger DNA damage response (DDR) and induce telomeric DNA damage via stabilizing DNA HJs. Furthermore, VE-822 was demonstrated to sensitize the osteosarcoma cells to doxorubicin (Dox) by enhancing DNA damage and cellular apoptosis. This work thus reports one novel HJ stabilizer, and provide a potential anticancer strategy through the modulation of DNA HJs.
    Keywords:  DNA Holliday junction; DNA damage response; anti-osteosarcoma; homologous recombination repair; small molecule stabilizer; telomeric DNA damage
    DOI:  https://doi.org/10.1016/j.bcp.2021.114767
  20. PLoS Pathog. 2021 Sep 20. 17(9): e1009954
      Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2cc), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell line carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2cc debulking that favors cell survival and virus production.
    DOI:  https://doi.org/10.1371/journal.ppat.1009954
  21. Cell Rep. 2021 Sep 21. pii: S2211-1247(21)01153-0. [Epub ahead of print]36(12): 109706
      The serine synthesis pathway (SSP) involving metabolic enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) drives intracellular serine biosynthesis and is indispensable for cancer cells to grow in serine-limiting environments. However, how SSP is regulated is not well understood. Here, we report that activating transcription factor 3 (ATF3) is crucial for transcriptional activation of SSP upon serine deprivation. ATF3 is rapidly induced by serine deprivation via a mechanism dependent on ATF4, which in turn binds to ATF4 and increases the stability of this master regulator of SSP. ATF3 also binds to the enhancers/promoters of PHGDH, PSAT1, and PSPH and recruits p300 to promote expression of these SSP genes. As a result, loss of ATF3 expression impairs serine biosynthesis and the growth of cancer cells in the serine-deprived medium or in mice fed with a serine/glycine-free diet. Interestingly, ATF3 expression positively correlates with PHGDH expression in a subset of TCGA cancer samples.
    Keywords:  ATF3; ATF4; PHGDH; PSAT1; PSPH; p300; serine biosynthesis; serine deprivation; serine metabolism; serine synthesis pathway
    DOI:  https://doi.org/10.1016/j.celrep.2021.109706
  22. Front Genet. 2021 ;12 728520
      The use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 has moved from bench to bedside in less than 10years, realising the vision of correcting disease through genome editing. The accuracy and safety of this approach relies on the precise control of DNA damage and repair processes to achieve the desired editing outcomes. Strategies for modulating pathway choice for repairing CRISPR-mediated DNA double-strand breaks (DSBs) have advanced the genome editing field. However, the promise of correcting genetic diseases with CRISPR-Cas9 based therapies is restrained by a lack of insight into controlling desired editing outcomes in cells of different tissue origin. Here, we review recent developments and urge for a greater understanding of tissue specific DNA repair processes of CRISPR-induced DNA breaks. We propose that integrated mapping of tissue specific DNA repair processes will fundamentally empower the implementation of precise and safe genome editing therapies for a larger variety of diseases.
    Keywords:  CRISPR-Cas9; DNA double-strand break; genome editing; homology directed repair; microhomology mediated end-joining; non-homologous end-joining; tissue specific DNA repair; tissue stem cells
    DOI:  https://doi.org/10.3389/fgene.2021.728520
  23. Oncogene. 2021 Sep 20.
      There has been accumulating evidence for the clinical benefit of chemoradiation therapy (CRT), whereas mechanisms in CRT-recurrent clones derived from the primary tumor are still elusive. Herein, we identified an aberrant BUB1B/BUBR1 expression in CRT-recurrent clones in bladder cancer (BC) by comprehensive proteomic analysis. CRT-recurrent BC cells exhibited a cell-cycle-independent upregulation of BUB1B/BUBR1 expression rendering an enhanced DNA repair activity in response to DNA double-strand breaks (DSBs). With DNA repair analyses employing the CRISPR/cas9 system, we revealed that cells with aberrant BUB1B/BUBR1 expression dominantly exploit mutagenic nonhomologous end joining (NHEJ). We further found that phosphorylated ATM interacts with BUB1B/BUBR1 after ionizing radiation (IR) treatment, and the resistance to DSBs by increased BUB1B/BUBR1 depends on the functional ATM. In vivo, tumor growth of CRT-resistant T24R cells was abrogated by ATM inhibition using AZD0156. A dataset analysis identified FOXM1 as a putative BUB1B/BUBR1-targeting transcription factor causing its increased expression. These data collectively suggest a redundant role of BUB1B/BUBR1 underlying mutagenic NHEJ in an ATM-dependent manner, aside from the canonical activity of BUB1B/BUBR1 on the G2/M checkpoint, and offer novel clues to overcome CRT resistance.
    DOI:  https://doi.org/10.1038/s41388-021-02021-y
  24. Clin Cancer Res. 2021 Sep 22. pii: clincanres.2139.2021. [Epub ahead of print]
       PURPOSE: Azacitidine and decitabine are hypomethylating agents (HMAs), that is, inhibit and deplete DNA methyltransferase 1 (DNMT1). HMAs are standard single-agent therapies for myelodysplastic syndromes and acute myeloid leukemias. Several attempts to improve outcomes by combining HMAs with investigational agents, excepting with the BCL2-inhibitor venetoclax, have failed in randomized clinical trial (RCT) evaluations. We extract lessons from decades of clinical trials to thereby inform future work.
    EXPERIMENTAL DESIGN: Serial single-agent clinical trials were analyzed for mechanism and pathway properties of HMAs underpinning their success, and for rules for dose and schedule selection. RCTs were studied for principles, dos and don'ts for productive combination therapy.
    RESULTS: Single-agent HMA trial results encourage dose and schedule selection to increase S-phase dependent DNMT1-targeting, and discourage doses that cause indiscriminate anti-metabolite effects/cytotoxicity, since these attrit myelopoiesis reserves needed for clinical response. Treatment-related myelosuppression should prompt dose/frequency-reductions of less-active investigational agents rather than more active HMA. Administering cytostatic agents concurrently with HMA can antagonize S-phase dependent DNMT1-targeting. Supportive care that enables on-time administration of S-phase (exposure-time) dependent HMA could be useful. Agents that manipulate pyrimidine metabolism to increase HMA pro-drug processing into DNMT1-depleting nucleotide, and/or inhibit other epigenetic enzymes implicated in oncogenic silencing of lineage-differentiation, could be productive, but doses and schedules should adhere to therapeutic-index/molecular-targeted principles already learned.
    CONCLUSION: >40 years of clinical trials history indicate mechanism, pathway and therapeutic-index properties of HMAs that underpin their almost exclusive success and teaches lessons for selection and design of combinations aiming to build on this treatment foundation.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-21-2139
  25. Nucleic Acids Res. 2021 Sep 22. pii: gkab801. [Epub ahead of print]
      Ribonucleoside triphosphate (rNTP) incorporation in DNA by DNA polymerases is a frequent phenomenon that results in DNA structural change and genome instability. However, it is unclear whether the rNTP incorporation into DNA follows any specific sequence patterns. We analyzed multiple datasets of ribonucleoside monophosphates (rNMPs) embedded in DNA, generated from three rNMP-sequencing techniques. These rNMP libraries were obtained from Saccharomyces cerevisiae cells expressing wild-type or mutant replicative DNA polymerase and ribonuclease H2 genes. We performed computational analyses of rNMP sites around early and late-firing autonomously replicating sequences (ARSs) of the yeast genome, where leading and lagging DNA synthesis starts bidirectionally. We found the preference of rNTP incorporation on the leading strand in wild-type DNA polymerase yeast cells. The leading/lagging-strand ratio of rNTP incorporation changes dramatically within the first 1,000 nucleotides from ARSs, highlighting the Pol δ - Pol ϵ handoff during early leading-strand synthesis. Furthermore, the pattern of rNTP incorporation is markedly distinct between the leading and lagging strands not only in mutant but also in wild-type polymerase cells. Such specific signatures of Pol δ and Pol ϵ provide a new approach to track the labor of these polymerases.
    DOI:  https://doi.org/10.1093/nar/gkab801
  26. Bio Protoc. 2021 Aug 20. 11(16): e4119
      Maintenance of DNA integrity is of pivotal importance for cells to circumvent detrimental processes that can ultimately lead to the development of various diseases. In the face of a plethora of endogenous and exogenous DNA-damaging agents, cells have evolved a variety of DNA repair mechanisms that are responsible for safeguarding genetic integrity. Given the relevance of DNA damage and its repair in disease, measuring the amount of both aspects is of considerable interest. The comet assay is a widely used method that allows the measurement of both DNA damage and its repair in cells. For this, cells are treated with DNA-damaging agents and embedded into a thin layer of agarose on top of a microscope slide. Subsequent lysis removes all protein and lipid components to leave so-called 'nucleoids' consisting of naked DNA remaining in the agarose. These nucleoids are then subjected to electrophoresis, whereby the negatively charged DNA migrates toward the anode depending on its degree of fragmentation and creates shapes resembling comets, which can be subsequently visualized and analyzed by fluorescence microscopy. The comet assay can be adapted to assess a wide variety of genotoxins and repair kinetics, in addition to both DNA single-strand and double-strand breaks. In this protocol, we describe in detail how to perform the alkaline comet assay to assess single-strand breaks and their repair using cultured human cell lines. We describe the workflow for assessing the amount of DNA damage generated by agents such as hydrogen peroxide (H2O2) and methyl-methanesulfonate (MMS) or present endogenously in cells, and how to assess the repair kinetics after such an insult. The procedure described herein is easy to follow and allows the cost-effective assessment of single-strand breaks and their repair kinetics in cultured cells.
    Keywords:  DNA damage; DNA repair; DNA repair kinetics; Genotoxic agents; Oxidative stress; Reactive oxygen species
    DOI:  https://doi.org/10.21769/BioProtoc.4119
  27. Nat Struct Mol Biol. 2021 Sep 23.
      Human checkpoint kinase ataxia telangiectasia-mutated (ATM) plays a key role in initiation of the DNA damage response following DNA double-strand breaks. ATM inhibition is a promising approach in cancer therapy, but, so far, detailed insights into the binding modes of known ATM inhibitors have been hampered due to the lack of high-resolution ATM structures. Using cryo-EM, we have determined the structure of human ATM to an overall resolution sufficient to build a near-complete atomic model and identify two hitherto unknown zinc-binding motifs. We determined the structure of the kinase domain bound to ATPγS and to the ATM inhibitors KU-55933 and M4076 at 2.8 Å, 2.8 Å and 3.0 Å resolution, respectively. The mode of action and selectivity of the ATM inhibitors can be explained by structural comparison and provide a framework for structure-based drug design.
    DOI:  https://doi.org/10.1038/s41594-021-00654-x
  28. Methods Mol Biol. 2022 ;2363 321-334
      Nuclear, mitochondrial and plastidic DNA is constantly exposed to conditions, such as ultraviolet radiation or reactive oxygen species, which will induce chemical modifications to the nucleotides. Unless repaired, these modifications can lead to mutations, so the nucleus, mitochondria and plastids each contains a number of DNA repair systems. We here describe assays for measuring the enzyme activities associated with the base-excision repair pathway in potato tuber mitochondria. As the name implies, this pathway involves removing a modified base and replacing it with an undamaged base. Activity of each of the enzymes involved, DNA glycosylase, apurinic/apyrimidinic endonuclease, DNA polymerase and DNA ligase can be measured by incubating a mitochondrial extract with a specifically designed oligonucleotide. After incubation, the reaction mixture is separated on a polyacrylamide gel, and the amounts of specific products formed is estimated by autoradiography, which makes it possible to calculate the enzymatic activity.
    Keywords:  Base excision repair; DNA repair; Plant mitochondria; mtDNA
    DOI:  https://doi.org/10.1007/978-1-0716-1653-6_21
  29. J Pharmacol Exp Ther. 2021 Sep 23. pii: JPET-AR-2021-000845. [Epub ahead of print]
      The effective treatment of brain tumors is a considerable challenge in part due to the presence of the blood-brain barrier (BBB) that limits drug delivery. Glioblastoma (GBM) is an aggressive and infiltrative primary brain tumor with an extremely poor prognosis following standard of care therapy with surgery, radiation therapy (RT), and chemotherapy. DNA damage response (DDR) pathways play a critical role in DNA repair in cancer cells, and inhibition of these pathways can potentially augment RT and chemotherapy tumor cell toxicity. The Ataxia Telangiectasia and Rad3-Related (ATR) kinase is a key regulator of the DDR network and is potently and selectively inhibited by the ATR inhibitor, berzosertib. While in vitro studies demonstrate a synergistic effect of berzosertib in combination with temozolomide (TMZ), in vivo efficacy studies have yet to recapitulate this observation using intracranial tumor models. In the current study, we demonstrate that delivery of berzosertib to the brain is restricted by efflux at the BBB. Berzosertib has a high binding affinity to brain tissue compared to plasma, thereby leading to low free drug concentrations in the brain. Berzosertib distribution is heterogenous within the tumor, where concentrations are substantially lower in normal brain and invasive tumor rim (where the BBB is intact) when compared to the tumor core (where the BBB is leaky). These results demonstrate that high tissue binding and limited and heterogenous brain distribution of berzosertib may be important factors that influence the efficacy of berzosertib therapy in GBM. Significance Statement This study examined the brain delivery and efficacy of the potent ATR inhibitor - berzosertib, in PDX models of GBM. Berzosertib is actively effluxed at the BBB and is highly bound to brain tissue leading to low free drug concentrations in the brain. Berzosertib is heterogeneously distributed into different regions of the brain and tumor and was not efficacious in vivo when combined with TMZ. These factors inform the future clinical utility of berzosertib for GBM.
    Keywords:  ABC efflux transporters; CNS pharmacokinetics; DNA damage and repair; blood-brain barrier
    DOI:  https://doi.org/10.1124/jpet.121.000845
  30. Cancer Res. 2021 Sep 21. pii: canres.1415.2021. [Epub ahead of print]
      The BRCA1 tumor suppressor gene encodes a multi-domain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks (DSB), which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathological features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR-incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-1415
  31. JCI Insight. 2021 Sep 22. pii: e148931. [Epub ahead of print]6(18):
      Aiming to identify rare high-penetrance mutations in new genes for the underlying predisposition in familial colorectal cancer (CRC), we performed whole-exome sequencing in 24 familial CRCs. Mutations in genes that regulate DNA repair (RMI1, PALB2, FANCI) were identified that were related to the Fanconi anemia DNA repair pathway. In one pedigree, we found a nonsense mutation in CHEK2. CHEK2 played an essential role in cell cycle and DNA damage repair. Somatic mutation analysis in CHEK2 variant carriers showed mutations in TP53, APC, and FBXW7. Loss of heterozygosity was found in carcinoma of CHEK2 variant carrier, and IHC showed loss of Chk2 expression in cancer tissue. We identified a second variant in CHEK2 in 126 sporadic CRCs. A KO cellular model for CHEK2 (CHEK2KO) was generated by CRISPR/Cas9. Functional experiments demonstrated that CHEK2KO cells showed defective cell cycle arrest and apoptosis, as well as reduced p53 phosphorylation, upon DNA damage. We associated germline mutations in genes that regulate the DNA repair pathway with the development of CRC. We identified CHEK2 as a regulator of DNA damage response and perhaps as a gene involved in CRC germline predisposition. These findings link CRC predisposition to the DNA repair pathway, supporting the connection between genome integrity and cancer risk.
    Keywords:  Cancer; Cell cycle; DNA repair; Gastroenterology; Genetics
    DOI:  https://doi.org/10.1172/jci.insight.148931
  32. J Radiat Res. 2021 Sep 25. pii: rrab084. [Epub ahead of print]
      Various types of DNA lesions are produced when cells are exposed to ionizing radiation (IR). The type and yield of IR-induced DNA damage is influenced by the oxygen concentration. Thus, different DNA repair mechanisms may be involved in the response of normoxic and hypoxic cells to irradiation with IR. However, differences between the repair mechanisms of IR-induced DNA damage under normoxic versus hypoxic conditions have not been clarified. Elucidating the relative contribution of individual repair factors to cell survival would give insight into the repair mechanisms operating in irradiated normoxic and hypoxic cells. In the present study, we used a panel of repair-deficient human TK6 cell lines that covered seven repair pathways. Cells were irradiated with X-rays under normoxic and hypoxic conditions, and the sensitivities of each mutant relative to the wild-type (i.e. relative sensitivity) were determined for normoxic and hypoxic conditions. The sensitivity of cells varied depending on the type of repair defects. However, for each repair mutant, the relative sensitivity under normoxic conditions was comparable to that under hypoxic conditions. This result indicates that the relative contribution of individual repair pathways to cell survival is comparable in normoxic and hypoxic cells, although the spectrum of IR-induced DNA damage in hypoxic cells differs from that of normoxic cells.
    Keywords:  DNA repair mechanism; TK6 DNA repair-deficient cell lines; hypoxia; ionizing radiation (IR)
    DOI:  https://doi.org/10.1093/jrr/rrab084
  33. Cell Death Discov. 2021 Sep 22. 7(1): 259
      The poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors show survival benefits in ovarian cancer patients with BRCA1/2 mutation or homologous recombination (HR) deficiency, but only limited efficacy in HR-proficient ones. Another drug, arsenic trioxide (ATO) or arsenic drug (RIF), exerts antitumor effects via inducing DNA damage. Here, we investigated the combined therapeutic effects of the PARP inhibitors and the arsenic compound in HR-proficient ovarian cancer. The combined treatment of niraparib, olaparib, or fluazolepali with ATO showed a significant suppression in tumor cell viability and colony formation. The drug treatment also induced synergistic inhibition of cell proliferation and DNA damage, and acceleration of cell apoptosis in two HR-proficient ovarian cancer cell lines SKOV3 and CAOV3, either by simultaneous or sequential administration. The mechanism underlying these synergistic effects were reflected by the significantly increased ratio of cleaved-PARP/total PARP and decreased ratio of p-AKT/total AKT. Consistently, the combination of olaparib with RIF synergistically reduced the tumor growth in mouse xenograft models. In conclusion, the arsenic compound greatly sensitizes HR-proficient ovarian cancer cells to the PARP inhibitors, and our findings provide an evidence for the clinical treatment development of this combination in HR-proficient ovarian cancer patients.
    DOI:  https://doi.org/10.1038/s41420-021-00638-2
  34. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00697-3. [Epub ahead of print]81(18): 3775-3785
      With the elucidation of myriad anabolic and catabolic enzyme-catalyzed cellular pathways crisscrossing each other, an obvious question arose: how could these networks operate with maximal catalytic efficiency and minimal interference? A logical answer was the postulate of metabolic channeling, which in its simplest embodiment assumes that the product generated by one enzyme passes directly to a second without diffusion into the surrounding medium. This tight coupling of activities might increase a pathway's metabolic flux and/or serve to sequester unstable/toxic/reactive intermediates as well as prevent their access to other networks. Here, we present evidence for this concept, commencing with enzymes that feature a physical molecular tunnel, to multi-enzyme complexes that retain pathway substrates through electrostatics or enclosures, and finally to metabolons that feature collections of enzymes assembled into clusters with variable stoichiometric composition. Lastly, we discuss the advantages of reversibly assembled metabolons in the context of the purinosome, the purine biosynthesis metabolon.
    Keywords:  membrane-less compartmentalization; metabolic channeling; metabolon; molecular tunnel; purinosome
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.030
  35. Mol Cell. 2021 Sep 15. pii: S1097-2765(21)00717-6. [Epub ahead of print]
      ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.
    Keywords:  ADP-ribosylation; chemical biology; interaction proteomics; post-translational modifications; solid-phase synthesis
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.037
  36. Nat Commun. 2021 Sep 22. 12(1): 5568
      Eukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway. Furthermore, it was possible to reconstitute a Rad27- and Msh2-Msh6-dependent MMR reaction in vitro using a mispaired DNA substrate and other MMR proteins. Our results demonstrate Rad27 defines an Exo1-independent eukaryotic MMR pathway that is redundant with at least two other MMR pathways.
    DOI:  https://doi.org/10.1038/s41467-021-25866-z
  37. Cell Rep. 2021 Sep 21. pii: S2211-1247(21)01171-2. [Epub ahead of print]36(12): 109722
      DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.
    Keywords:  3D genome organization; DNA methylation; allele-specific replication; cancer; chromatin; epigenome; replication timing; single-cell sequencing
    DOI:  https://doi.org/10.1016/j.celrep.2021.109722
  38. Proc Natl Acad Sci U S A. 2021 09 28. pii: e2101268118. [Epub ahead of print]118(39):
      Tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM) are caused by aberrant mechanistic Target of Rapamycin Complex 1 (mTORC1) activation due to loss of either TSC1 or TSC2 Cytokine profiling of TSC2-deficient LAM patient-derived cells revealed striking up-regulation of Interleukin-6 (IL-6). LAM patient plasma contained increased circulating IL-6 compared with healthy controls, and TSC2-deficient cells showed up-regulation of IL-6 transcription and secretion compared to wild-type cells. IL-6 blockade repressed the proliferation and migration of TSC2-deficient cells and reduced oxygen consumption and extracellular acidification. U-13C glucose tracing revealed that IL-6 knockout reduced 3-phosphoserine and serine production in TSC2-deficient cells, implicating IL-6 in de novo serine metabolism. IL-6 knockout reduced expression of phosphoserine aminotransferase 1 (PSAT1), an essential enzyme in serine biosynthesis. Importantly, recombinant IL-6 treatment rescued PSAT1 expression in the TSC2-deficient, IL-6 knockout clones selectively and had no effect on wild-type cells. Treatment with anti-IL-6 (αIL-6) antibody similarly reduced cell proliferation and migration and reduced renal tumors in Tsc2 +/- mice while reducing PSAT1 expression. These data reveal a mechanism through which IL-6 regulates serine biosynthesis, with potential relevance to the therapy of tumors with mTORC1 hyperactivity.
    Keywords:  interleukin 6; lymphangioleiomyomatosis; mTORC1; phosphoserine aminotransferase 1 (PSAT1); tuberous sclerosis complex
    DOI:  https://doi.org/10.1073/pnas.2101268118
  39. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00501-3. [Epub ahead of print]81(18): 3878-3878.e1
      Metabolic networks support cancer cell survival, proliferation, and malignant progression. Cancer cells take up large amounts of nutrients such as glucose and glutamine whose metabolism provides the energy, reducing equivalents, and biosynthetic precursors required to meet the biosynthetic demands of proliferation. Intermediates of glycolysis and the tricarboxylic acid (TCA) cycle provide critical building blocks for synthesis of non-essential amino acids, nucleotides, and fatty acids. To view this SnapShot, open or download the PDF.
    DOI:  https://doi.org/10.1016/j.molcel.2021.06.021
  40. Nat Chem Biol. 2021 Sep 23.
      Epitranscriptomic RNA modifications can regulate RNA activity; however, there remains a major gap in our understanding of the RNA chemistry present in biological systems. Here we develop RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy that relies on metabolic RNA labeling, mRNA interactome capture and quantitative proteomics, to investigate RNA-modifying enzymes in human cells. RNABPP with 5-fluoropyrimidines allowed us to profile 5-methylcytidine (m5C) and 5-methyluridine (m5U) methyltransferases. Further, we uncover a new mechanism-based crosslink between 5-fluorouridine (5-FUrd)-modified RNA and the dihydrouridine synthase (DUS) homolog DUS3L. We investigate the mechanism of crosslinking and use quantitative nucleoside liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and 5-FUrd-based crosslinking and immunoprecipitation (CLIP) sequencing to map DUS3L-dependent dihydrouridine (DHU) modifications across the transcriptome. Finally, we show that DUS3L-knockout (KO) cells have compromised protein translation rates and impaired cellular proliferation. Taken together, our work provides a general approach for profiling RNA-modifying enzyme activity in living cells and reveals new pathways for epitranscriptomic RNA regulation.
    DOI:  https://doi.org/10.1038/s41589-021-00874-8
  41. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00692-4. [Epub ahead of print]81(18): 3803-3819.e7
      Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.
    Keywords:  AMP; AMPK; IMPA1; energy stress; glucose deprivation; inosiotl sensor; inositol; inositol/AMP ratio; mitochondrial fission; mitocondrial dynamics
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.025