FASEB J. 2024 Jan;38(1): e23382
Cisplatin (Cis) is among the most powerful antineoplastic medications, nevertheless, its serious side effects; particularly nephrotoxicity designates a major concern. Previous studies reported that ezetimibe (Eze), a well-known antihyperlipidemic drug, exerts additional trivial pharmacological effects. In this work, we displayed Eze as an intriguing protective candidate in a cisplatin-induced nephrotoxicity rat model through AMPK activation. Eze (10 mg/kg, p.o.) was administered for two weeks and Cis (10 mg/kg, i.p.) was administered on the 10th day to induce nephrotoxicity in male Wistar rats. Treatment with Eze greatly augmented the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and the antioxidant regulator; nuclear factor erythroid 2-related factor 2 (Nrf2), thus, mitigating oxidative injury through induction of the antioxidant enzymes, such as heme oxygenase-1 (HO-1) and glutathione reductase (GR). As well, Eze relieved inflammation by reducing protein expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding domain-like receptor protein 3 (NLRP3), which led to a decrease in the release of caspase-1, in addition to, the inflammatory markers IL-18 and IL-1 β. Besides, Eze ameliorated apoptosis in the renal cells through inhibiting the phosphorylated Apoptosis signal-regulating kinase-1(p-ASK1), caspase-3 and reducing Bax/Bcl2ratio. Correspondingly, histopathological examination corroborated the previous biochemical findings. Collectively, Eze exerts significant renal protection against Cis-induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways that are probably mediated, at least partly, via activating AMPK/Nrf2/HO-1 pathway and conquering both TXNIP/NLRP3 inflammasome and TXNIP/ASK1 signaling pathways. To confirm the protective effect of Eze via AMPK-activation, an AMPK-inhibitor, dorsomorphin (Dors), when co-administered with Eze abolished its protective effect.
Keywords: AMPK/Nrf2/HO-1 pathway; TXNIP/ASK1 signaling; TXNIP/NLRP3 signaling; cisplatin-induced nephrotoxicity; ezetimibe