bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2020‒08‒30
six papers selected by
Ralitsa Radostinova Madsen
University College London Cancer Institute


  1. Ann Neurol. 2020 Aug 27.
      OBJECTIVE: Mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) complex have been associated with a broad spectrum of brain and organ overgrowth syndromes. For example, mutations in phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2) have been identified in patients with megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome, which includes brain overgrowth. To better understand the pathogenesis of PIK3R2 related mutations, we have developed and characterized a murine model.METHODS: We generated a knock-in mouse model for the most common human PIK3R2 mutation, p.G373R (p.G367R in mice) using CRISPR/Cas9. The mouse phenotypes, including brain size, seizure activity, cortical lamination, cell proliferation/size/density, interneuron migration, and PI3K pathway activation were analyzed using standard methodologies. For patients with PIK3R2 mutations, clinical data (OFC and epilepsy) were retrospectively obtained from our clinical records (published/unpublished).
    RESULTS: The PI3K-AKT pathway was hyperactivated in these mice, confirming the p.G367R mutation is an activating mutation in vivo. Similar to patients with PIK3R2 mutations, these mice have enlarged brains. We found cell size to be increased but not cell numbers. The embryonic brain showed mild defects in cortical lamination, although not observed in the mature brain. Furthermore, EEG recordings from mutant mice showed background slowing and rare seizures, again similar to our observations in patients.
    INTERPRETATION: We have generated a PIK3R2 mouse model that exhibits megalencephaly and EEG changes, both of which overlap with human patients. Our data provide novel insight into the pathogenesis of the human disease caused by PIK3R2 p.G373R mutation. We anticipate this model will be valuable in testing therapeutic options for MPPH patients. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1002/ana.25890
  2. Genes (Basel). 2020 Aug 25. pii: E989. [Epub ahead of print]11(9):
      The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
    Keywords:  G-protein coupled receptors; amino acids; and autophagy; cell growth; kinases; mTORC1; metabolism; phosphorylation; small GTPases
    DOI:  https://doi.org/10.3390/genes11090989
  3. Circ Res. 2020 Jul 03. 127(2): 310-329
      All organisms growing beyond the oxygen diffusion limit critically depend on a functional vasculature for survival. Yet blood vessels are far more than passive, uniform conduits for oxygen and nutrient supply. A remarkable organotypic heterogeneity is brought about by tissue-specific differentiated endothelial cells (lining the blood vessels' lumen) and allows blood vessels to deal with organ-specific demands for homeostasis. On the flip side, when blood vessels go awry, they promote life-threatening diseases characterized by endothelial cells inappropriately adopting an angiogenic state (eg, tumor vascularization) or becoming dysfunctional (eg, diabetic microvasculopathies), calling respectively for antiangiogenic therapies and proangiogenic/vascular regenerative strategies. In solid tumors, despite initial enthusiasm, growth factor-based (mostly anti-VEGF [vascular endothelial growth factor]) antiangiogenic therapies do not sufficiently live up to the expectations in terms of efficiency and patient survival, in part, due to intrinsic and acquired therapy resistance. Tumors cunningly deploy alternative growth factors than the ones targeted by the antiangiogenic therapies to reinstigate angiogenesis or revert to other ways of securing blood flow, independently of the targeted growth factors. In trying to alleviate tissue ischemia and to repair dysfunctional or damaged endothelium, local in-tissue administration of (genes encoding) proangiogenic factors or endothelial (stem) cells harnessing regenerative potential have been explored. Notwithstanding evaluation in clinical trials, these approaches are often hampered by dosing issues and limited half-life or local retention of the administered agents. Here, without intending to provide an all-encompassing historical overview, we focus on some recent advances in understanding endothelial cell behavior in health and disease and identify novel molecular players and concepts that could eventually be considered for therapeutic targeting.
    Keywords:  blood vessel; endothelial cell; metabolism; regeneration
    DOI:  https://doi.org/10.1161/CIRCRESAHA.120.316851
  4. Oncogene. 2020 Aug 25.
      Endometrial cancer remains the most common gynecological malignancy in the United States. While the loss of the tumor suppressor, PTEN (phosphatase and tensin homolog), is well studied in endometrial cancer, recent studies suggest that DICER1, the endoribonuclease responsible for miRNA genesis, also plays a significant role in endometrial adenocarcinoma. Conditional uterine deletion of Dicer1 and Pten in mice resulted in poorly differentiated endometrial adenocarcinomas, which expressed Napsin A and HNF1B (hepatocyte nuclear factor 1 homeobox B), markers of clear-cell adenocarcinoma. Adenocarcinomas were hormone-independent. Treatment with progesterone did not mitigate poorly differentiated adenocarcinoma, nor did it affect adnexal metastasis. Transcriptomic analyses of DICER1 deleted uteri or Ishikawa cells revealed unique transcriptomic profiles and global miRNA downregulation. Computational integration of miRNA with mRNA targets revealed deregulated let-7 and miR-16 target genes, similar to published human DICER1-mutant endometrial cancers from TCGA (The Cancer Genome Atlas). Similar to human endometrial cancers, tumors exhibited dysregulation of ephrin-receptor signaling and transforming growth factor-beta signaling pathways. LIM kinase 2 (LIMK2), an essential molecule in p21 signal transduction, was significantly upregulated and represents a novel mechanism for hormone-independent pathogenesis of endometrial adenocarcinoma. This preclinical mouse model represents the first genetically engineered mouse model of poorly differentiated endometrial adenocarcinoma.
    DOI:  https://doi.org/10.1038/s41388-020-01434-5
  5. Nature. 2020 Aug;584(7822): 608-613
      Glandular epithelia, including the mammary and prostate glands, are composed of basal cells (BCs) and luminal cells (LCs)1,2. Many glandular epithelia develop from multipotent basal stem cells (BSCs) that are replaced in adult life by distinct pools of unipotent stem cells1,3-8. However, adult unipotent BSCs can reactivate multipotency under regenerative conditions and upon oncogene expression3,9-13. This suggests that an active mechanism restricts BSC multipotency under normal physiological conditions, although the nature of this mechanism is unknown. Here we show that the ablation of LCs reactivates the multipotency of BSCs from multiple epithelia both in vivo in mice and in vitro in organoids. Bulk and single-cell RNA sequencing revealed that, after LC ablation, BSCs activate a hybrid basal and luminal cell differentiation program before giving rise to LCs-reminiscent of the genetic program that regulates multipotency during embryonic development7. By predicting ligand-receptor pairs from single-cell data14, we find that TNF-which is secreted by LCs-restricts BC multipotency under normal physiological conditions. By contrast, the Notch, Wnt and EGFR pathways were activated in BSCs and their progeny after LC ablation; blocking these pathways, or stimulating the TNF pathway, inhibited regeneration-induced BC multipotency. Our study demonstrates that heterotypic communication between LCs and BCs is essential to maintain lineage fidelity in glandular epithelial stem cells.
    DOI:  https://doi.org/10.1038/s41586-020-2632-y
  6. Nat Commun. 2020 Aug 28. 11(1): 4319
      Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.
    DOI:  https://doi.org/10.1038/s41467-020-18084-6