bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2021‒03‒28
seventeen papers selected by
Ralitsa Radostinova Madsen
University College London Cancer Institute


  1. Nat Commun. 2021 Mar 26. 12(1): 1920
      Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.
    DOI:  https://doi.org/10.1038/s41467-021-22101-7
  2. Front Immunol. 2021 ;12 631271
      Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP3. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear. In this study, we have used quantitative mass spectrometry, biochemical approaches and CRISPR-Cas9 gene editing to uncover the p110δ interactome in primary CD4+ T cells. Moreover, we have determined how the PI3Kδ interactome changes upon the differentiation of small naïve T cells into T cell blasts expanded in the presence of IL-2. Our interactomic analyses identified multiple constitutive and inducible PI3Kδ-interacting proteins, some of which were common to naïve and previously-activated T cells. Our data reveals that PI3Kδ rapidly interacts with as many as seven adaptor proteins upon TCR engagement, including the Gab-family proteins, GAB2 and GAB3, a CD5-CBL signalosome and the transmembrane proteins ICOS and TRIM. Our results also suggest that PI3Kδ pre-forms complexes with the adaptors SH3KBP1 and CRKL in resting cells that could facilitate the localization and activation of p110δ at the plasma membrane by forming ternary complexes during early TCR signalling. Furthermore, we identify interactions that were not previously known to occur in CD4+ T cells, involving BCAP, GAB3, IQGAP3 and JAML. We used CRISPR-Cas9-mediated gene knockout in primary T cells to confirm that BCAP is a positive regulator of PI3K-AKT signalling in CD4+ T cell blasts. Overall, our results provide evidence for a large protein network that regulates the recruitment and activation of PI3Kδ in T cells. Finally, this work shows how the PI3Kδ interactome is remodeled as CD4+ T cells differentiate from naïve T cells to activated T cell blasts. These activated T cells upregulate additional PI3Kδ adaptor proteins, including BCAP, GAB2, IQGAP3 and ICOS. This rewiring of TCR-PI3K signalling that occurs upon T cell differentiation may serve to reduce the threshold of activation and diversify the inputs for the PI3K pathway in effector T cells.
    Keywords:  CD4+ T cells; CRISPR-Cas9; PI3K; TCR signalling; interactomics; p110δ
    DOI:  https://doi.org/10.3389/fimmu.2021.631271
  3. Nat Commun. 2021 03 23. 12(1): 1826
      Somatic mutations of ASXL1 are frequently detected in age-related clonal hematopoiesis (CH). However, how ASXL1 mutations drive CH remains elusive. Using knockin (KI) mice expressing a C-terminally truncated form of ASXL1-mutant (ASXL1-MT), we examined the influence of ASXL1-MT on physiological aging in hematopoietic stem cells (HSCs). HSCs expressing ASXL1-MT display competitive disadvantage after transplantation. Nevertheless, in genetic mosaic mouse model, they acquire clonal advantage during aging, recapitulating CH in humans. Mechanistically, ASXL1-MT cooperates with BAP1 to deubiquitinate and activate AKT. Overactive Akt/mTOR signaling induced by ASXL1-MT results in aberrant proliferation and dysfunction of HSCs associated with age-related accumulation of DNA damage. Treatment with an mTOR inhibitor rapamycin ameliorates aberrant expansion of the HSC compartment as well as dysregulated hematopoiesis in aged ASXL1-MT KI mice. Our findings suggest that ASXL1-MT provokes dysfunction of HSCs, whereas it confers clonal advantage on HSCs over time, leading to the development of CH.
    DOI:  https://doi.org/10.1038/s41467-021-22053-y
  4. FASEB J. 2021 Apr;35(4): e21440
      Insulin signaling is critical for the development of preovulatory follicles and progression through the antral stage. Using a conditional knockout model that escapes this blockage, we recently described the role of insulin signaling in granulosa cells during the periovulatory window in mice lacking Insr and Igf1r driven by Pgr-Cre. These mice were infertile, exhibiting defects in ovulation, luteinization, steroidogenesis, and early embryo development. Herein, we demonstrate that while these mice exhibit normal uterine receptivity, uterine cell proliferation and decidualization are compromised resulting in complete absence of embryo implantation in uteri lacking both receptors. While the histological organization of double knockout mice appeared normal, the thickness of their endometrium was significantly reduced. This was supported by the reduced proliferation of both epithelial and stromal cells during the preimplantation stages of pregnancy. Expression and localization of the main drivers of uterine proliferation, ESR1 and PGR, was normal in knockouts, suggesting that insulin signaling acts downstream of these two receptors. While AKT/PI3K signaling was unaffected by insulin receptor ablation, activation of p44/42 MAPK was significantly reduced in both single and double knockout uteri at 3.5 dpc. Overall, we conclude that both INSR and IGF1R are necessary for optimal endometrial proliferation and implantation.
    Keywords:  endometrial proliferation; implantations; insulin signaling; knockout mice; uterus
    DOI:  https://doi.org/10.1096/fj.202002448R
  5. Mol Cell. 2021 Mar 19. pii: S1097-2765(21)00178-7. [Epub ahead of print]
      Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.
    Keywords:  MXD2; Protein translation; S6K1; WTAP; YTHDF readers; cMyc; eIF4A; m(6)A mRNA modification; mRNA stability; mTORC1
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.010
  6. Mol Cell. 2021 Mar 17. pii: S1097-2765(21)00177-5. [Epub ahead of print]
      The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.
    Keywords:  Cell growth; MAT2A; Methionine cycle; N(6)-methyladenosine; Protein Synthesis; RNA metabolism; S-adenosylmethionine; WTAP; mTOR; mTORC1
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.009
  7. Dev Cell. 2021 Mar 20. pii: S1534-5807(21)00206-9. [Epub ahead of print]
      Cells probe their surrounding matrix for attachment sites via integrins that are internalized by endocytosis. We find that SH3BP4 regulates integrin surface expression in a signaling-dependent manner via clathrin-coated pits (CCPs). Dephosphorylated SH3BP4 at S246 is efficiently recruited to CCPs, while upon Akt phosphorylation, SH3BP4 is sequestered by 14-3-3 adaptors and excluded from CCPs. In the absence of Akt activity, SH3BP4 binds GIPC1 and targets neuropilin-1 and α5/β1-integrin for endocytosis, leading to inhibition of cell spreading. Similarly, chemorepellent semaphorin-3a binds neuropilin-1 to activate PTEN, which antagonizes Akt and thus recruits SH3BP4 to CCPs to internalize both receptors and induce cell contraction. In PTEN mutant non-small cell lung cancer cells with high Akt activity, expression of non-phosphorylatable active SH3BP4-S246A restores semaphorin-3a induced cell contraction. Thus, SH3BP4 links Akt signaling to endocytosis of NRP1 and α5/β1-integrins to modulate cell-matrix interactions in response to intrinsic and extrinsic cues.
    Keywords:  Akt; GIPC1; NRP1; NSCLC; PTEN; SH3BP4; Semaphorin-3a; alpha-5-integrin; clathrin-mediated endocytosis; non-small cell lung cancer
    DOI:  https://doi.org/10.1016/j.devcel.2021.03.009
  8. Nat Commun. 2021 03 25. 12(1): 1876
      Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.
    DOI:  https://doi.org/10.1038/s41467-021-22166-4
  9. Biochem Biophys Res Commun. 2021 Mar 17. pii: S0006-291X(21)00427-7. [Epub ahead of print]552 106-113
      Cancer is characterized by uncontrolled proliferation resulting from aberrant cell cycle progression. The activation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling, a regulatory pathway for the cell cycle, stabilizes cyclin D1 in the G1 phase by inhibiting the activity of glycogen synthase kinase 3β (GSK3β) via phosphorylation. We previously reported that phospholipase C-related catalytically inactive protein (PRIP), a phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] binding protein, regulates PI3K/AKT signaling by competitively inhibiting substrate recognition by PI3K. Therefore, in this study, we investigated whether PRIP is involved in cell cycle progression. PRIP silencing in MCF-7 cells, a human breast cancer cell line, demonstrated PI(3,4,5)P3 signals accumulated at the cell periphery compared to that of the control. This suggests that PRIP reduction enhances PI(3,4,5)P3-mediated signaling. Consistently, PRIP silencing in MCF-7 cells exhibited increased phosphorylation of AKT and GSK3β which resulted in cyclin D1 accumulation. In contrast, the exogenous expression of PRIP in MCF-7 cells evidenced stronger downregulation of AKT and GSK3β phosphorylation, reduced accumulation of cyclin D1, and diminished cell proliferation in comparison to control cells. Flow cytometry analysis indicated that MCF-7 cells stably expressing PRIP attenuate cell cycle progression. Importantly, tumor growth of MCF-7 cells stably expressing PRIP was considerably prevented in an in vivo xenograft mouse model. In conclusion, PRIP expression downregulates PI3K/AKT/GSK3β-mediated cell cycle progression and suppresses tumor growth. Therefore, we propose that PRIP is a new therapeutic target for anticancer therapy.
    Keywords:  AKT; PI(3,4,5)P(3); PRIP; Phosphatidylinositol 3-kinase; Tumor growth
    DOI:  https://doi.org/10.1016/j.bbrc.2021.03.045
  10. Cell Rep. 2021 Mar 23. pii: S2211-1247(21)00189-3. [Epub ahead of print]34(12): 108875
      The maintenance of mitochondrial homeostasis requires PTEN-induced kinase 1 (PINK1)-dependent mitophagy, and mutations in PINK1 are associated with Parkinson's disease (PD). PINK1 is also downregulated in tumor cells with PTEN mutations. However, there is limited information concerning the role of PINK1 in tissue growth and tumorigenesis. Here, we show that the loss of pink1 caused multiple growth defects independent of its pathological target, Parkin. Moreover, knocking down pink1 in muscle cells induced hyperglycemia and limited systemic organismal growth by the induction of Imaginal morphogenesis protein-Late 2 (ImpL2). Similarly, disrupting PTEN activity in multiple tissues impaired systemic growth by reducing pink1 expression, resembling wasting-like syndrome in cancer patients. Furthermore, the re-expression of PINK1 fully rescued defects in carbohydrate metabolism and systemic growth induced by the tissue-specific pten mutations. Our data suggest a function for PINK1 in regulating systemic growth in Drosophila and shed light on its role in wasting in the context of PTEN mutations.
    Keywords:  ImpL2; PINK1; PTEN; Parkin; mitochondria
    DOI:  https://doi.org/10.1016/j.celrep.2021.108875
  11. Mol Oncol. 2021 Mar 24.
      Cellular phenotype plasticity between epithelial and mesenchymal states has been linked to metastasis and heterogeneous responses to cancer therapy, and remains a challenge for the treatment of triple-negative breast cancer (TNBC). Here we used isogenic human breast epithelial cell lines, D492 and D492M, representing the epithelial and the mesenchymal phenotype, respectively. We employed a CRISPR-Cas9 loss-of-function screen targeting a 2240-genes "druggable genome" to identify phenotype-specific vulnerabilities. Cells with the epithelial phenotype were more vulnerable to the loss of genes related to EGFR-RAS-MAPK signaling, while the mesenchymal-like cells had increased sensitivity to knockout of G2 -M cell cycle regulators. Furthermore, we discovered knockouts that sensitize to the mTOR inhibitor everolimus and the chemotherapeutic drug fluorouracil in a phenotype-specific manner. Specifically, loss of EGFR and Fatty Acid Synthase (FASN) increased the effectiveness of the drugs in the epithelial and the mesenchymal phenotype, respectively. These phenotype-associated genetic vulnerabilities were confirmed using targeted inhibitors of EGFR (gefitinib), G2 -M transition (STLC) and FASN (Fasnall). In conclusion, a CRISPR-Cas9 loss-of-function screen enables the identification of phenotype-specific genetic vulnerabilities that can pinpoint actionable targets and promising therapeutic combinations.
    Keywords:  CRISPR knockout screen; actionable targets; epithelial-mesenchymal transition; phenotype plasticity; therapeutic vulnerabilities; triple-negative breast cancer
    DOI:  https://doi.org/10.1002/1878-0261.12951
  12. Nat Commun. 2021 03 23. 12(1): 1822
      Increased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.
    DOI:  https://doi.org/10.1038/s41467-021-22106-2
  13. Cell Metab. 2021 Mar 18. pii: S1550-4131(21)00114-5. [Epub ahead of print]
      There is general agreement that the acute suppression of hepatic glucose production by insulin is mediated by both a direct and an indirect effect on the liver. There is, however, no consensus regarding the relative magnitude of these effects under physiological conditions. Extensive research over the past three decades in humans and animal models has provided discordant results between these two modes of insulin action. Here, we review the field to make the case that physiologically direct hepatic insulin action dominates acute suppression of glucose production, but that there is also a delayed, second order regulation of this process via extrahepatic effects. We further provide our views regarding the timing, dominance, and physiological relevance of these effects and discuss novel concepts regarding insulin regulation of adipose tissue fatty acid metabolism and central nervous system (CNS) signaling to the liver, as regulators of insulin's extrahepatic effects on glucose production.
    Keywords:  central nervous system; free fatty acids; glucagon; glucose; hepatic; insulin; portal vein
    DOI:  https://doi.org/10.1016/j.cmet.2021.03.007
  14. Science. 2021 Mar 26. pii: eaaz4544. [Epub ahead of print]371(6536):
      Cytoskeletal regulatory protein dysfunction has been etiologically linked to inherited diseases associated with immunodeficiency and autoimmunity, but the mechanisms involved are incompletely understood. Here, we show that conditional Wave2 ablation in T cells causes severe autoimmunity associated with increased mammalian target of rapamycin (mTOR) activation and metabolic reprogramming that engender spontaneous activation and accelerated differentiation of peripheral T cells. These mice also manifest diminished antigen-specific T cell responses associated with increased inhibitory receptor expression, dysregulated mitochondrial function, and reduced cell survival upon activation. Mechanistically, WAVE2 directly bound mTOR and inhibited its activation by impeding mTOR interactions with RAPTOR (regulatory-associated protein of mTOR) and RICTOR (rapamycin-insensitive companion of mTOR). Both the T cell defects and immunodysregulatory disease were ameliorated by pharmacological mTOR inhibitors. Thus, WAVE2 restraint of mTOR activation is an absolute requirement for maintaining the T cell homeostasis supporting adaptive immune responses and preventing autoimmunity.
    DOI:  https://doi.org/10.1126/science.aaz4544
  15. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2021942118. [Epub ahead of print]118(13):
      Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.
    Keywords:  autophagy; glaucoma; primary cilia; stretching; trabecular meshwork
    DOI:  https://doi.org/10.1073/pnas.2021942118