bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2021‒10‒03
23 papers selected by
Ralitsa Radostinova Madsen
University College London Cancer Institute


  1. Front Pediatr. 2021 ;9 732836
      PIK3CA-related overgrowth spectrum (PROS) is an umbrella term referring to various clinical entities, which share the same pathogenetic mechanism. These conditions are caused by somatic gain-of-function mutations in PIK3CA, which encodes the 110-kD catalytic α subunit of PI3K (p110α). These PIK3CA mutations occur as post-zygotic events and lead to a gain of function of PI3K, with consequent constitutional activation of the downstream cascades (e.g., AKT/mTOR pathway), involved in cellular proliferation, survival and growth, as well as in vascular development in the embryonic stage. PIK3CA-related cancers and PROS share almost the same PIK3CA mutational profile, with about 80% of mutations occurring at three hotspots, E542, E545, and H1047. These hotspot mutations show the most potent effect on enzymatic activation of PI3K and consequent downstream biological responses. If present at the germinal level, these gain-of-function mutations would be lethal to the embryo, therefore we only see them in the mosaic state. The common clinical denominator of PROS disorders is that they are sporadic conditions, presenting with congenital or early childhood onset overgrowth with a typical mosaic distribution. However, the severity of PROS is highly variable, ranging from localized and apparently isolate overgrowth to progressive and extensive lipomatous overgrowth associated with life-threatening vascular malformations, as seen in CLOVES syndrome. Traditional therapeutic approaches, such as sclerotherapy and surgical debulking, are often not curative in PROS patients, leading to a recrudescence of the overgrowth in the treated area. Specific attention has been recently paid to molecules that are used and studied in the oncogenic setting and that are targeted on specific alterations of the pathway PI3K/AKT/mTOR. In June 2018, Venot et al. showed the effect of Alpelisib (BYL719), a specific inhibitor for the p110α subunit of PI3K, in patients with PROS disorders who had severe or life-threatening complications and were not sensitive to any other treatment. In these cases, dramatic anatomical and functional improvements occurred in all patients across many types of affected organ. Molecular testing in PROS patients is a crucial step in providing the conclusive diagnosis and then the opportunity for tailored therapy. The somatic nature of this group of diseases makes challenging to reach a molecular diagnosis, requiring deep sequencing methods that have to be performed on DNA extracted from affected tissue. Moreover, even analyzing the DNA extracted from affected tissue there is no guarantee to succeed in detection of the casual somatic mutation, since the affected tissue itself is highly heterogeneous and biopsy approaches can be burdened by incorrect sampling or inadequate tissue sample. We present an 8-year-old girl with CLOVES syndrome, born with a large cystic lymphangioma involving the left hemithorax and flank, multiple lipomas, and hypertrophy of the left foot and leg. She developed severe scoliosis. Many therapeutic approaches have been attempted, including Sildenafil treatment, scleroembolization, laser therapy, and multiple debulking surgeries, but none of these were of benefit to our patient's clinical status. She then started treatment with Rapamycin from May 2019, without significant improvement in both vascular malformation and leg hypertrophy. A high-coverage Whole Exome Sequencing analysis performed on DNA extracted from a skin sample showed a mosaic gain-of-function variant in the PIK3CA gene (p.H1047R, 11% of variant allele frequency). Once molecular confirmation of our clinical suspicion was obtained, after a multidisciplinary evaluation, we decided to discontinue Sirolimus and start targeted therapy with Alpelisib (50 mg/day). We noticed a decrease in fibroadipose overgrowth at the dorsal level, an improvement in in posture and excellent tolerability. The treatment is still ongoing.
    Keywords:  Alpelisib/BYL719; CLOVES; PIK3CA; PROS; targeted (selective) treatment
    DOI:  https://doi.org/10.3389/fped.2021.732836
  2. NPJ Breast Cancer. 2020 Oct 02. 6(1): 48
      The AKT inhibitor MK2206 (M) was evaluated in I-SPY 2 and graduated in the HER2+, HR-, and HR- HER2+ signatures. We hypothesized that AKT signaling axis proteins/genes may specifically predict response to M and tested 26 phospho-proteins and 10 genes involved in AKT-mTOR-HER signaling; in addition, we tested 9 genes from a previous study in the metastatic setting. One hundred and fifty patients had gene expression data from pretreatment biopsies available for analysis (M: 94, control: 56) and 138 had protein data (M: 87, control: 51). Logistic modeling was used to assess biomarker performance in pre-specified analysis. In general, phospho-protein biomarkers of activity in the AKT-mTOR-HER pathway appeared more predictive of response to M than gene expression or total protein biomarkers in the same pathway; however, the nature of the predictive biomarkers differed in the HER2+ and TN groups. In the HER2+ subset, patients achieving a pCR in M had higher levels of multiple AKT kinase substrate phospho-proteins (e.g., pmTOR, pTSC2). In contrast, in the TN subset responding patients had lower levels of AKT pathway phospho-proteins, such as pAKT, pmTOR, and pTSC2. Pathway mutations did not appear to account for these associations. Additional exploratory whole-transcriptome analysis revealed immune signaling as strongly associated with response to M in the HER2+ subset. While our sample size is small, these results suggest that the measurement of particular AKT kinase substrate phospho-proteins could be predictive of MK2206 efficacy in both HER2+ and TN tumors and that immune signaling may play a role in response in HER2+ patients.
    DOI:  https://doi.org/10.1038/s41523-020-00189-2
  3. J Clin Invest. 2021 Oct 01. pii: e136939. [Epub ahead of print]131(19):
      Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3'-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs. Smooth muscle cell-specific genetic ablation or pharmacological inhibition of p110α prevented onset and progression of pulmonary hypertension (PH) as well as right heart hypertrophy in vivo and even reversed established vascular remodeling and PH in various animal models. These effects were attributable to both inhibition of vascular proliferation and induction of apoptosis. Since this pathway is abundantly activated in human disease, p110α represents a central target in PH.
    Keywords:  Cell Biology; Growth factors; Phosphotyrosine; Signal transduction; Vascular Biology
    DOI:  https://doi.org/10.1172/JCI136939
  4. Cancer Res. 2021 Oct 01. 81(19): 4896-4898
      The Warburg effect, the propensity of some cells to metabolize glucose to lactate in the presence of oxygen (also known as aerobic glycolysis), has long been observed in cancer and other contexts of cell proliferation, but only in the past two decades have significant gains been made in understanding how and why this metabolic transformation occurs. In 2004, Cancer Research published a study by Elstrom and colleagues that provided one of the first connections between a specific oncogene and aerobic glycolysis. Studying hematopoietic and glioblastoma cell lines, they demonstrated that constitutive activation of AKT promotes an increased glycolytic rate without altering proliferation or oxygen consumption in culture. They proposed that it is this effect that allows constitutive AKT activation to transform cells and found that it sensitizes cells to glucose deprivation. In the years since, mechanistic understanding of oncogenic control of metabolism, and glycolysis specifically, has deepened substantially. Current work seeks to understand the benefits and liabilities associated with glycolytic metabolism and to identify inhibitors that might be of clinical benefit to target glycolytic cancer cells.See related article by Elstrom and colleagues, Cancer Res 2004;64:3892-9.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-2647
  5. Analyst. 2021 Sep 29.
      The PI3-kinase/AKT/mTOR pathway plays a central role in cancer signaling. While p110α is the catalytic α-subunit of PI3-kinase and a major drug target, PTEN is the main negative regulator of the PI3-kinase/AKT/mTOR pathway. PTEN is often down-regulated in cancer, and there are conflicting data on PTEN's role as breast cancer biomarker. PTEN and p110α protein expression in tumors is commonly analyzed by immunohistochemistry, which suffers from poor multiplexing capacity, poor standardization, and antibody crossreactivity, and which provides only semi-quantitative data. Here, we present an automated, and standardized immuno-matrix-assisted laser desorption/ionization mass spectrometry (iMALDI) assay that allows precise and multiplexed quantitation of PTEN and p110α concentrations, without the limitations of immunohistochemistry. Our iMALDI assay only requires a low-cost benchtop MALDI-TOF mass spectrometer, which simplifies clinical translation. We validated our assay's precision and accuracy, with simultaneous enrichment of both target proteins not significantly affecting the precision and accuracy of the quantitation when compared to the PTEN- and p110α-singleplex iMALDI assays (<15% difference). The multiplexed assay's linear range is from 0.6-20 fmol with accuracies of 90-112% for both target proteins, and the assay is free of matrix-related interferences. The inter-day reproducibility over 5-days was high, with an overall CV of 9%. PTEN and p110α protein concentrations can be quantified down to 1.4 fmol and 0.6 fmol per 10 μg of total tumor protein, respectively, in various tumor tissue samples, including fresh-frozen breast tumors and colorectal cancer liver metastases, and patient-derived xenograft (PDX) tumors.
    DOI:  https://doi.org/10.1039/d1an00165e
  6. Dev Cell. 2021 Sep 27. pii: S1534-5807(21)00724-3. [Epub ahead of print]56(18): 2542-2544
      Although contractile processes, from tissue invagination to cell intercalation, utilize diverse ratcheting mechanisms, little is known about how ratcheting becomes engaged at specific cell surfaces. In this issue of Developmental Cell, Maio et al. demonstrate that PI(3,4,5)P3 is a paramount regulator of the Sbf/RabGEF-Rab35 ratchet mechanism.
    DOI:  https://doi.org/10.1016/j.devcel.2021.09.006
  7. J Exp Med. 2021 Dec 06. pii: e20211035. [Epub ahead of print]218(12):
      While phosphatidylinositide 3-kinase delta (PI3Kδ) plays a critical role in humoral immunity, the requirement for PI3Kδ signaling in plasma cells remains poorly understood. Here, we used a conditional mouse model of activated PI3Kδ syndrome (APDS), to interrogate the function of PI3Kδ in plasma cell biology. Mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) in B cells generated increased numbers of memory B cells and mounted an enhanced secondary response but exhibited a rapid decay of antibody levels over time. Consistent with these findings, aPIK3CD expression markedly impaired plasma cell generation, and expression of aPIK3CD intrinsically in plasma cells was sufficient to diminish humoral responses. Mechanistically, aPIK3CD disrupted ER proteostasis and autophagy, which led to increased plasma cell death. Notably, this defect was driven primarily by elevated mTORC1 signaling and modulated by treatment with PI3Kδ-specific inhibitors. Our findings establish an essential role for PI3Kδ in plasma cell homeostasis and suggest that modulating PI3Kδ activity may be useful for promoting and/or thwarting specific immune responses.
    DOI:  https://doi.org/10.1084/jem.20211035
  8. Cell Rep. 2021 Sep 28. pii: S2211-1247(21)01211-0. [Epub ahead of print]36(13): 109757
      Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal.
    Keywords:  aldehyde dehydrogenase; hypoxia; mammosphere; pluripotency factor; proteasome; telomere; tumor-initiating cells; ubiquitination
    DOI:  https://doi.org/10.1016/j.celrep.2021.109757
  9. J Biol Chem. 2021 Sep 23. pii: S0021-9258(21)01047-4. [Epub ahead of print] 101244
      TANK-binding kinase 1 (TBK1) is a non-canonical IκB kinase that plays an essential role in the innate immune response to foreign pathogens. Recent studies have highlighted additional roles for TBK1 in the regulation of metabolism, although the mechanisms of this regulation have not been well characterized. In a recent issue, Tooley et al demonstrated that TBK1-dependent activation of downstream kinase Akt is mediated via mTOR complex 2 (mTORC2). This novel action of TBK1 reveals a key role for this kinase in the regulation of cellular metabolism and growth by diverse environmental inputs.
    Keywords:  AKT; TBK1; mTORC2
    DOI:  https://doi.org/10.1016/j.jbc.2021.101244
  10. Front Immunol. 2021 ;12 716405
      Naïve T cells (TN) constitutively recirculate through secondary lymphatic organs (SLOs), where they scan dendritic cells (DCs) for cognate peptide-loaded major histocompatibility complexes (pMHC). Continuous trafficking between SLOs not only enables rapid clonal selection but also ensures TN homeostasis by providing access to prosurvival signals from TCR, IL-7R, and the chemokine receptor CCR7. Inside the lymphoid tissue, CCR7-mediated TN motility is mainly driven by the Rac activator DOCK2, with a separate contribution by a phosphoinositide-3-kinase γ (PI3Kγ)-dependent pathway. Tec tyrosine kinases and the Rac activator Tiam1 constitute prominent downstream effectors of PI3K signaling. Yet, the precise role of Tec kinase versus Tiam1 signaling during CCR7-mediated TN migration and homeostasis remains incompletely understood. Here, we examined the function of the Tec family member interleukin-2-inducible T-cell kinase (Itk) and Tiam1 during TN migration in vitro and in vivo using intravital microscopy. Itk deficiency caused a mild decrease in CCR7-triggered TN migration, mirroring observations made with PI3Kγ;-/- T cells, while lack of Tiam1 did not affect TN motility. In silico modeling suggested that reduced migration in the absence of Itk does not result in a substantial decrease in the frequency of TN encounters with DCs within the lymphoid tissue. In contrast, Itk was important to maintain in vivo homeostasis of CD4+ TN, also in MHCII-deficient hosts. Taken together, our data suggest that Itk contributes to TN migration and survival by integrating chemokine receptor and TCR signaling pathways.
    Keywords:  CCL21/CCR7 axis; T cell trafficking; Tec kinase; chemokine; intravital 2-photon microscopy; signal transduction
    DOI:  https://doi.org/10.3389/fimmu.2021.716405
  11. Stem Cell Res Ther. 2021 Sep 25. 12(1): 510
      BACKGROUND: Phosphoinositide-3 kinase (PI3K)/AKT signaling participates in cellular proliferation, survival and tumorigenesis. The activation of AKT signaling promotes the cellular reprogramming including generation of induced pluripotent stem cells (iPSCs) and dedifferentiation of primordial germ cells (PGCs). Previous studies suggested that AKT promotes reprogramming by activating proliferation and glycolysis. Here we report a line of evidence that supports the notion that AKT signaling is involved in TET-mediated DNA demethylation during iPSC induction.METHODS: AKT signaling was activated in mouse embryonic fibroblasts (MEFs) that were transduced with OCT4, SOX2 and KLF4. Multiomics analyses were conducted in this system to examine the effects of AKT activation on cells undergoing reprogramming.
    RESULTS: We revealed that cells undergoing reprogramming with artificially activated AKT exhibit enhanced anabolic glucose metabolism and accordingly increased level of cytosolic α-ketoglutarate (αKG), which is an essential cofactor for the enzymatic activity of the 5-methylcytosine (5mC) dioxygenase TET. Additionally, the level of TET is upregulated. Consistent with the upregulation of αKG production and TET, we observed a genome-wide increase in 5-hydroxymethylcytosine (5hmC), which is an intermediate in DNA demethylation. Moreover, the DNA methylation level of ES-cell super-enhancers of pluripotency-related genes is significantly decreased, leading to the upregulation of associated genes. Finally, the transduction of TET and the administration of cell-permeable αKG to somatic cells synergistically enhance cell reprogramming by Yamanaka factors.
    CONCLUSION: These results suggest the possibility that the activation of AKT during somatic cell reprogramming promotes epigenetic reprogramming through the hyperactivation of TET at the transcriptional and catalytic levels.
    Keywords:  AKT signal; DNA demethylation; Reprogramming; TET; iPS cells; αKG
    DOI:  https://doi.org/10.1186/s13287-021-02578-1
  12. Nucleic Acids Res. 2021 Sep 27. pii: gkab860. [Epub ahead of print]
      To date, only some cancer patients can benefit from chemotherapy and targeted therapy. Drug resistance continues to be a major and challenging problem facing current cancer research. Rapidly accumulated patient-derived clinical transcriptomic data with cancer drug response bring opportunities for exploring molecular determinants of drug response, but meanwhile pose challenges for data management, integration, and reuse. Here we present the Cancer Treatment Response gene signature DataBase (CTR-DB, http://ctrdb.ncpsb.org.cn/), a unique database for basic and clinical researchers to access, integrate, and reuse clinical transcriptomes with cancer drug response. CTR-DB has collected and uniformly reprocessed 83 patient-derived pre-treatment transcriptomic source datasets with manually curated cancer drug response information, involving 28 histological cancer types, 123 drugs, and 5139 patient samples. These data are browsable, searchable, and downloadable. Moreover, CTR-DB supports single-dataset exploration (including differential gene expression, receiver operating characteristic curve, functional enrichment, sensitizing drug search, and tumor microenvironment analyses), and multiple-dataset combination and comparison, as well as biomarker validation function, which provide insights into the drug resistance mechanism, predictive biomarker discovery and validation, drug combination, and resistance mechanism heterogeneity.
    DOI:  https://doi.org/10.1093/nar/gkab860
  13. Proc Natl Acad Sci U S A. 2021 Oct 05. pii: e2109057118. [Epub ahead of print]118(40):
      Receptor clustering plays a key role in triggering cellular activation, but the relationship between the spatial configuration of clusters and the elicitation of downstream intracellular signals remains poorly understood. We developed a DNA-origami-based system that is easily adaptable to other cellular systems and enables rich interrogation of responses to a variety of spatially defined inputs. Using a chimeric antigen receptor (CAR) T cell model system with relevance to cancer therapy, we studied signaling dynamics at single-cell resolution. We found that the spatial arrangement of receptors determines the ligand density threshold for triggering and encodes the temporal kinetics of signaling activities. We also showed that signaling sensitivity of a small cluster of high-affinity ligands is enhanced when surrounded by nonstimulating low-affinity ligands. Our results suggest that cells measure spatial arrangements of ligands, translate that information into distinct signaling dynamics, and provide insights into engineering immunotherapies.
    Keywords:  DNA origami; MAP kinase signaling; T cell signaling; chimeric antigen receptor T cell; immunotherapy
    DOI:  https://doi.org/10.1073/pnas.2109057118
  14. Cell. 2021 Sep 28. pii: S0092-8674(21)01061-8. [Epub ahead of print]
      Determining how cells vary with their local signaling environment and organize into distinct cellular communities is critical for understanding processes as diverse as development, aging, and cancer. Here we introduce EcoTyper, a machine learning framework for large-scale identification and validation of cell states and multicellular communities from bulk, single-cell, and spatially resolved gene expression data. When applied to 12 major cell lineages across 16 types of human carcinoma, EcoTyper identified 69 transcriptionally defined cell states. Most states were specific to neoplastic tissue, ubiquitous across tumor types, and significantly prognostic. By analyzing cell-state co-occurrence patterns, we discovered ten clinically distinct multicellular communities with unexpectedly strong conservation, including three with myeloid and stromal elements linked to adverse survival, one enriched in normal tissue, and two associated with early cancer development. This study elucidates fundamental units of cellular organization in human carcinoma and provides a framework for large-scale profiling of cellular ecosystems in any tissue.
    Keywords:  CIBERSORTx; EcoTyper; cancer genomics; cell states; cellular communities; ecosystems; ecotypes; expression deconvolution; tumor immunology; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.cell.2021.09.014
  15. Mol Syst Biol. 2021 Sep;17(9): e10156
      Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.
    Keywords:  CPTAC; breast cancer; medulloblastoma; post-translational modifications; targeted mass spectrometry
    DOI:  https://doi.org/10.15252/msb.202010156
  16. Science. 2021 Oct;374(6563): 38-39
      [Figure: see text].
    DOI:  https://doi.org/10.1126/science.abl9080
  17. Mol Cell. 2021 Sep 21. pii: S1097-2765(21)00736-X. [Epub ahead of print]
      mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis. Despite protein quality control mechanisms, amino acid shortage in melanoma induces aberrant proteins by ribosomal frameshifting. The extent and the underlying mechanisms related to this phenomenon are yet unknown. Here, we show that tryptophan depletion-induced ribosomal frameshifting is a widespread phenomenon in cancer. We termed this event sloppiness and strikingly observed its association with MAPK pathway hyperactivation. Sloppiness is stimulated by RAS activation in primary cells, suppressed by pharmacological inhibition of the oncogenic MAPK pathway in sloppy cells, and restored in cells with acquired resistance to MAPK pathway inhibition. Interestingly, sloppiness causes aberrant peptide presentation at the cell surface, allowing recognition and specific killing of drug-resistant cancer cells by T lymphocytes. Thus, while oncogenes empower cancer progression and aggressiveness, they also expose a vulnerability by provoking the production of aberrant peptides through sloppiness.
    Keywords:  MAPK pathway; T cell killing; T cell recognition; aberrant peptides; acquired drug resistance; antigen presentation; cancer; protein synthesis; ribosomal frameshifting
    DOI:  https://doi.org/10.1016/j.molcel.2021.09.002
  18. Mol Biol Cell. 2021 Sep 29. mbcE21080382
      The translation of mRNAs that contain a premature termination codon (PTC) generates truncated proteins that may have toxic dominant negative effects. Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that degrades PTC-containing mRNAs to limit the production of truncated proteins. NMD activation requires a ribosome terminating translation at a PTC, but what happens to the polypeptides synthesized during the translation cycle needed to activate NMD is incompletely understood. Here, by establishing reporter systems that encode the same polypeptide sequence before a normal or premature termination codon, we show that termination of protein synthesis at a PTC is sufficient to selectively destabilize polypeptides in mammalian cells. Proteasome inhibition specifically rescues the levels of nascent polypeptides produced from PTC-containing mRNAs within an hour, but also disrupts mRNA homeostasis within a few hours. PTC-terminated polypeptide destabilization is also alleviated by depleting the central NMD factor UPF1 or SMG1, the kinase that phosphorylates UPF1 to activate NMD, but not by inhibiting SMG1 kinase activity. Our results suggest that polypeptide degradation is linked to PTC recognition in mammalian cells and clarify a framework to investigate these mechanisms.
    DOI:  https://doi.org/10.1091/mbc.E21-08-0382
  19. Bioinformatics. 2021 Sep 29. pii: btab674. [Epub ahead of print]
      SUMMARY: Integrating experimental information across proteomic datasets with the wealth of publicly available sequence annotations is a crucial part in many proteomic studies that currently lacks an automated analysis platform. Here we present AlphaMap, a Python package that facilitates the visual exploration of peptide-level proteomics data. Identified peptides and post-translational modifications in proteomic datasets are mapped to their corresponding protein sequence and visualized together with prior knowledge from UniProt and with expected proteolytic cleavage sites. The functionality of AlphaMap can be accessed via an intuitive graphical user interface or-more flexibly-as a Python package that allows its integration into common analysis workflows for data visualization. AlphaMap produces publication-quality illustrations and can easily be customized to address a given research question.AVAILABILITY: AlphaMap is implemented in Python and released under an Apache license. The source code and one-click installers are freely available at https://github.com/MannLabs/alphamap.
    SUPPLEMENTARY INFORMATION: A detailed user guide for AlphaMap is provided as supplementary data.
    DOI:  https://doi.org/10.1093/bioinformatics/btab674
  20. NPJ Genom Med. 2020 Sep 29. 5(1): 40
      Individuals with PTEN hamartoma tumour syndrome (PHTS), including Cowden syndrome (CS), are susceptible to multiple benign hamartomas and an increased risk of cancer, particularly breast, endometrial, and thyroid. As a result, individuals undergo enhanced surveillance for early detection of these cancers. However, less commonly occurring cancers, such as colorectal and kidney, have insufficient guidelines for early detection. Currently, screening for kidney cancer via renal ultrasound begins at 40 years of age, because there were only rare cases of elevated risk in prospective series under 40. There have, however, been accumulating reports of kidney cancer in individuals with CS in their 30s, illustrating a need to lower the age of surveillance. We present additional evidence of renal cell carcinoma in two individuals with CS in their early twenties, and propose a reassessment of the abdominal surveillance in patients with PHTS. We propose biannual screening for kidney cancer beginning at 20 years of age.
    DOI:  https://doi.org/10.1038/s41525-020-00148-7
  21. BMC Cancer. 2021 Sep 25. 21(1): 1053
      BACKGROUND: Over the past decades, approaches for diagnosing and treating cancer have seen significant improvement. However, the variability of patient and tumor characteristics has limited progress on methods for prognosis prediction. The development of high-throughput omics technologies now provides multiple approaches for characterizing tumors. Although a large number of published studies have focused on integration of multi-omics data and use of pathway-level models for cancer prognosis prediction, there still exists a gap of knowledge regarding the prognostic landscape across multi-omics data for multiple cancer types using both gene-level and pathway-level predictors.METHODS: In this study, we systematically evaluated three often available types of omics data (gene expression, copy number variation and somatic point mutation) covering both DNA-level and RNA-level features. We evaluated the landscape of predictive performance of these three omics modalities for 33 cancer types in the TCGA using a Lasso or Group Lasso-penalized Cox model and either gene or pathway level predictors.
    RESULTS: We constructed the prognostic landscape using three types of omics data for 33 cancer types on both the gene and pathway levels. Based on this landscape, we found that predictive performance is cancer type dependent and we also highlighted the cancer types and omics modalities that support the most accurate prognostic models. In general, models estimated on gene expression data provide the best predictive performance on either gene or pathway level and adding copy number variation or somatic point mutation data to gene expression data does not improve predictive performance, with some exceptional cohorts including low grade glioma and thyroid cancer. In general, pathway-level models have better interpretative performance, higher stability and smaller model size across multiple cancer types and omics data types relative to gene-level models.
    CONCLUSIONS: Based on this landscape and comprehensively comparison, models estimated on gene expression data provide the best predictive performance on either gene or pathway level. Pathway-level models have better interpretative performance, higher stability and smaller model size relative to gene-level models.
    Keywords:  Cancer prognosis prediction; L1 penalized regression model; Multi-omics data; Pathway analysis
    DOI:  https://doi.org/10.1186/s12885-021-08796-3