bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2023‒06‒18
nineteen papers selected by
Ralitsa Radostinova Madsen
MRC-PPU


  1. Nat Commun. 2023 Jun 09. 14(1): 3240
      The mechanisms by which DNA alleles contribute to disease risk, drug response, and other human phenotypes are highly context-specific, varying across cell types and different conditions. Human induced pluripotent stem cells are uniquely suited to study these context-dependent effects but cell lines from hundreds or thousands of individuals are required. Village cultures, where multiple induced pluripotent stem lines are cultured and differentiated in a single dish, provide an elegant solution for scaling induced pluripotent stem experiments to the necessary sample sizes required for population-scale studies. Here, we show the utility of village models, demonstrating how cells can be assigned to an induced pluripotent stem line using single-cell sequencing and illustrating that the genetic, epigenetic or induced pluripotent stem line-specific effects explain a large percentage of gene expression variation for many genes. We demonstrate that village methods can effectively detect induced pluripotent stem line-specific effects, including sensitive dynamics of cell states.
    DOI:  https://doi.org/10.1038/s41467-023-38704-1
  2. Development. 2023 Jun 13. pii: dev.201323. [Epub ahead of print]
      Targeted knock-in of fluorescent reporters enables powerful gene and protein analyses in a physiological context. However, precise integration of long sequences remains challenging in vivo. Here, we demonstrate cloning-free and precise reporter knock-in into zebrafish genes, using PCR-generated templates for homology-directed repair with short homology arms (PCR tagging). Our novel knock-in reporter lines of vesicle-associated membrane protein (vamp) zebrafish homologues reveal subcellular complexity in this protein family. Our approach enables fast and efficient reporter integration in the zebrafish genome (in 10-40% of injected embryos) and rapid generation of stable germline-transmitting lines.
    Keywords:  HDR; Knock-in; Neuron; Synaptobrevin; Vamp; Zebrafish
    DOI:  https://doi.org/10.1242/dev.201323
  3. Nat Methods. 2023 Jun;20(6): 773
      
    DOI:  https://doi.org/10.1038/s41592-023-01926-8
  4. Proc Natl Acad Sci U S A. 2023 Jun 20. 120(25): e2300987120
      T cell antigen receptor stimulation induces tyrosine phosphorylation of downstream signaling molecules and the phosphatidylinositol, Ras, MAPK, and PI3 kinase pathways, leading to T cell activation. Previously, we reported that the G-protein-coupled human muscarinic receptor could bypass tyrosine kinases to activate the phosphatidylinositol pathway and induce interleukin-2 production in Jurkat leukemic T cells. Here, we demonstrate that stimulating G-protein-coupled muscarinic receptors (M1 and synthetic hM3Dq) can activate primary mouse T cells if PLCβ1 is coexpressed. Resting peripheral hM3Dq+PLCβ1 (hM3Dq/β1) T cells did not respond to clozapine, an hM3Dq agonist, unless they were preactivated by TCR and CD28 stimulation which increased hM3Dq and PLCβ1 expression. This permitted large calcium and phosphorylated ERK responses to clozapine. Clozapine treatment induced high IFN-γ, CD69, and CD25 expression, but surprisingly did not induce substantial IL-2 in hM3Dq/β1 T cells. Importantly, costimulation of both muscarinic receptors plus the TCR even led to reduced IL-2 expression, suggesting a selective inhibitory effect of muscarinic receptor costimulation. Stimulation of muscarinic receptors induced strong nuclear translocation of NFAT and NFκB and activated AP-1. However, stimulation of hM3Dq led to reduced IL-2 mRNA stability which correlated with an effect on the IL-2 3'UTR activity. Interestingly, stimulation of hM3Dq resulted in reduced pAKT and its downstream pathway. This may explain the inhibitory impact on IL-2 production in hM3Dq/β1T cells. Moreover, an inhibitor of PI3K reduced IL-2 production in TCR-stimulated hM3Dq/β1 CD4 T cells, suggesting that activating the pAKT pathway is critical for IL-2 production in T cells.
    Keywords:  GPCR; T cells; muscarinic receptor; signaling
    DOI:  https://doi.org/10.1073/pnas.2300987120
  5. Trends Cell Biol. 2023 Jun 09. pii: S0962-8924(23)00088-0. [Epub ahead of print]
      Primary cilia protrude from most vertebrate cell bodies and act as specialized 'signalling antennae' that can substantially lengthen or retract in minutes to hours in response to specific stimuli. Here, we review the conditions and mechanisms responsible for regulating primary cilia length (PCL) in mammalian nonsensory neurons, and propose four models of how they could affect ciliary signalling and alter cell state and suggest experiments to distinguish between them. These models include (i) the passive indicator model, where changes in PCL have no consequence; (ii) the rheostat model, in which a longer cilium enhances signalling; (iii) the local concentration model, where ciliary shortening increases the local protein concentration to facilitate signalling; and (iv) the altered composition model where changes in PCL skew signalling.
    Keywords:  GPCR; length changes; molecular concentration; primary cilia; signal transduction
    DOI:  https://doi.org/10.1016/j.tcb.2023.05.005
  6. Nat Chem. 2023 Jun 15.
      Glutathione (GSH) is the main determinant of intracellular redox potential and participates in multiple cellular signalling pathways. Achieving a detailed understanding of intracellular GSH homeostasis depends on the development of tools to map GSH compartmentalization and intra-organelle fluctuations. Here we present a GSH-sensing platform for live-cell imaging, termed targetable ratiometric quantitative GSH (TRaQ-G). This chemogenetic sensor possesses a unique reactivity turn-on mechanism, ensuring that the small molecule is only sensitive to GSH in a desired location. Furthermore, TRaQ-G can be fused to a fluorescent protein to give a ratiometric response. Using TRaQ-G fused to a redox-insensitive fluorescent protein, we demonstrate that the nuclear and cytosolic GSH pools are independently regulated during cell proliferation. This sensor was used in combination with a redox-sensitive fluorescent protein to quantify redox potential and GSH concentration simultaneously in the endoplasmic reticulum. Finally, by exchanging the fluorescent protein, we created a near-infrared, targetable and quantitative GSH sensor.
    DOI:  https://doi.org/10.1038/s41557-023-01249-3
  7. Nat Commun. 2023 Jun 10. 14(1): 3450
      Identifying effective therapeutic treatment strategies is a major challenge to improving outcomes for patients with breast cancer. To gain a comprehensive understanding of how clinically relevant anti-cancer agents modulate cell cycle progression, here we use genetically engineered breast cancer cell lines to track drug-induced changes in cell number and cell cycle phase to reveal drug-specific cell cycle effects that vary across time. We use a linear chain trick (LCT) computational model, which faithfully captures drug-induced dynamic responses, correctly infers drug effects, and reproduces influences on specific cell cycle phases. We use the LCT model to predict the effects of unseen drug combinations and confirm these in independent validation experiments. Our integrated experimental and modeling approach opens avenues to assess drug responses, predict effective drug combinations, and identify optimal drug sequencing strategies.
    DOI:  https://doi.org/10.1038/s41467-023-39122-z
  8. Mol Cell Proteomics. 2023 Jun 14. pii: S1535-9476(23)00105-6. [Epub ahead of print] 100594
      Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition (EMT). The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment, and ARAF-driven activation upon FGF4 treatment.
    DOI:  https://doi.org/10.1016/j.mcpro.2023.100594
  9. Front Cell Dev Biol. 2023 ;11 1133994
      Introduction: Despite continued technological improvements, measurement errors always reduce or distort the information that any real experiment can provide to quantify cellular dynamics. This problem is particularly serious for cell signaling studies to quantify heterogeneity in single-cell gene regulation, where important RNA and protein copy numbers are themselves subject to the inherently random fluctuations of biochemical reactions. Until now, it has not been clear how measurement noise should be managed in addition to other experiment design variables (e.g., sampling size, measurement times, or perturbation levels) to ensure that collected data will provide useful insights on signaling or gene expression mechanisms of interest. Methods: We propose a computational framework that takes explicit consideration of measurement errors to analyze single-cell observations, and we derive Fisher Information Matrix (FIM)-based criteria to quantify the information value of distorted experiments. Results and Discussion: We apply this framework to analyze multiple models in the context of simulated and experimental single-cell data for a reporter gene controlled by an HIV promoter. We show that the proposed approach quantitatively predicts how different types of measurement distortions affect the accuracy and precision of model identification, and we demonstrate that the effects of these distortions can be mitigated through explicit consideration during model inference. We conclude that this reformulation of the FIM could be used effectively to design single-cell experiments to optimally harvest fluctuation information while mitigating the effects of image distortion.
    Keywords:  Fisher Information matrix; experiment design; fluorescence in situ hybridization (FISH); measurement noise; model inference; single-cell; stochastic gene expression
    DOI:  https://doi.org/10.3389/fcell.2023.1133994
  10. J Am Heart Assoc. 2023 Jun 15. e022352
      Background Identifying new therapeutic targets for preventing the myocardial ischemia-reperfusion injury would have profound implications in cardiovascular medicine. Myocardial ischemia-reperfusion injury remains a major clinical burden in patients with coronary artery disease. Methods and Results We studied several key mechanistic pathways known to mediate cardioprotection in myocardial ischemia-reperfusion in 2 independent genetic models with reduced cardiac phosphoinositide 3-kinase-α (PI3Kα) activity. P3Kα-deficient genetic models (PI3KαDN and PI3Kα-Mer-Cre-Mer) showed profound resistance to myocardial ischemia-reperfusion injury. In an ex vivo reperfusion protocol, PI3Kα-deficient hearts had an 80% recovery of function compared with ≈10% recovery in the wild-type. Using an in vivo reperfusion protocol, PI3Kα-deficient hearts showed a 40% reduction in infarct size compared with wild-type hearts. Lack of PI3Kα increased late Na+ current, generating an influx of Na+, facilitating the lowering of mitochondrial Ca2+, thereby maintaining mitochondrial membrane potential and oxidative phosphorylation. Consistent with these functional differences, mitochondrial structure in PI3Kα-deficient hearts was preserved following ischemia-reperfusion injury. Computer modeling predicted that PIP3, the product of PI3Kα action, can interact with the murine and human NaV1.5 channels binding to the hydrophobic pocket below the selectivity filter and occluding the channel. Conclusions Loss of PI3Kα protects from global ischemic-reperfusion injury linked to improved mitochondrial structure and function associated with increased late Na+ current. Our results strongly support enhancement of mitochondrial function as a therapeutic strategy to minimize ischemia-reperfusion injury.
    Keywords:  NaV1.5; PI3Kα; ischemia–reperfusion; mitochondria
    DOI:  https://doi.org/10.1161/JAHA.122.022352
  11. Sci Signal. 2023 Jun 13. 16(789): eadd3184
      The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.
    DOI:  https://doi.org/10.1126/scisignal.add3184
  12. Cell Discov. 2023 Jun 13. 9(1): 56
      Naturally occurring fluorescent proteins (FPs) are the most widely used tools for tracking cellular proteins and sensing cellular events. Here, we chemically evolved the self-labeling SNAP-tag into a palette of SNAP-tag mimics of fluorescent proteins (SmFPs) that possess bright, rapidly inducible fluorescence ranging from cyan to infrared. SmFPs are integral chemical-genetic entities based on the same fluorogenic principle as FPs, i.e., induction of fluorescence of non-emitting molecular rotors by conformational locking. We demonstrate the usefulness of these SmFPs in real-time tracking of protein expression, degradation, binding interactions, trafficking, and assembly, and show that these optimally designed SmFPs outperform FPs like GFP in many important ways. We further show that the fluorescence of circularly permuted SmFPs is sensitive to the conformational changes of their fusion partners, and that these fusion partners can be used for the development of single SmFP-based genetically encoded calcium sensors for live cell imaging.
    DOI:  https://doi.org/10.1038/s41421-023-00546-y
  13. Commun Biol. 2023 Jun 10. 6(1): 626
      Genome editing with CRISPR-associated (Cas) proteins holds exceptional promise for "correcting" variants causing genetic disease. To realize this promise, off-target genomic changes cannot occur during the editing process. Here, we use whole genome sequencing to compare the genomes of 50 Cas9-edited founder mice to 28 untreated control mice to assess the occurrence of S. pyogenes Cas9-induced off-target mutagenesis. Computational analysis of whole-genome sequencing data detects 26 unique sequence variants at 23 predicted off-target sites for 18/163 guides used. While computationally detected variants are identified in 30% (15/50) of Cas9 gene-edited founder animals, only 38% (10/26) of the variants in 8/15 founders validate by Sanger sequencing. In vitro assays for Cas9 off-target activity identify only two unpredicted off-target sites present in genome sequencing data. In total, only 4.9% (8/163) of guides tested have detectable off-target activity, a rate of 0.2 Cas9 off-target mutations per founder analyzed. In comparison, we observe ~1,100 unique variants in each mouse regardless of genome exposure to Cas9 indicating off-target variants comprise a small fraction of genetic heterogeneity in Cas9-edited mice. These findings will inform future design and use of Cas9-edited animal models as well as provide context for evaluating off-target potential in genetically diverse patient populations.
    DOI:  https://doi.org/10.1038/s42003-023-04974-0
  14. Stem Cell Reports. 2023 Jun 13. pii: S2213-6711(23)00188-1. [Epub ahead of print]18(6): 1255-1270
      In the past decade, the term organoid has moved from obscurity to common use to describe a 3D in vitro cellular model of a tissue that recapitulates structural and functional elements of the in vivo organ it models. The term organoid is now applied to structures formed as a result of two distinct processes: the capacity for adult epithelial stem cells to re-create a tissue niche in vitro and the ability to direct the differentiation of pluripotent stem cells to a 3D self-organizing multicellular model of organogenesis. While these two organoid fields rely upon different stem cell types and recapitulate different processes, both share common challenges around robustness, accuracy, and reproducibility. Critically, organoids are not organs. This commentary serves to discuss these challenges, how they impact genuine utility, and shine a light on the need to improve the standards applied to all organoid approaches.
    DOI:  https://doi.org/10.1016/j.stemcr.2023.05.009
  15. Stem Cell Reports. 2023 Jun 13. pii: S2213-6711(23)00182-0. [Epub ahead of print]18(6): 1371-1387
      The nutritional requirements for human induced pluripotent stem cell (hiPSC) growth have not been extensively studied. Here, building on our prior work that established the suitable non-basal medium components for hiPSC growth, we develop a simplified basal medium consisting of just 39 components, demonstrating that many ingredients of DMEM/F12 are either not essential or are at suboptimal concentrations. This new basal medium along with the supplement, which we call BMEM, enhances the growth rate of hiPSCs over DMEM/F12-based media, supports derivation of multiple hiPSC lines, and allows differentiation to multiple lineages. hiPSCs cultured in BMEM consistently have enhanced expression of undifferentiated cell markers such as POU5F1 and NANOG, along with increased expression of markers of the primed state and reduced expression of markers of the naive state. This work describes titration of the nutritional requirements of human pluripotent cell culture and identifies that suitable nutrition enhances the pluripotent state.
    Keywords:  Cell culture media; chemically defined; human induced pluripotent stem cell
    DOI:  https://doi.org/10.1016/j.stemcr.2023.05.004
  16. EMBO J. 2023 Jun 12. e113349
      NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.
    Keywords:  KEAP1; NRF2/NFE2L2; ULK1; liquid-liquid phase separation; p62/SQSTM1
    DOI:  https://doi.org/10.15252/embj.2022113349