bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2025–01–26
seventeen papers selected by
Ralitsa Radostinova Madsen, MRC-PPU



  1. Biochem Biophys Res Commun. 2025 Jan 13. pii: S0006-291X(25)00038-5. [Epub ahead of print]748 151324
      PIK3CA, which encodes protein p110α, is one of the most frequently mutated oncogenes and a promising drug-target for human cancer. Previously, we demonstrate that p85β is released from PI3K complex which contain PIK3CA helical domain mutations and translocates into nucleus to regulate tri-methylation of H3K27, thereby promoting tumorigenicity. Here, we identify DIRAS2 and SOWAHB as target genes of nuclear p85β in PIK3CA-helical-domain-mutant tumors. DIRAS2 and SOWAHB are tumor suppressive genes, whose expression are repressed by nuclear p85β through histone methyltransferase EZH2. More importantly, combination of PI3K inhibitor and importin-β inhibitor effectively inhibits the growth of PIK3CA-helical-domain-mutant tumors by synchronously blocking both AKT signaling and nuclear p85β/DIRAS2 and SOWAHB axis. In this study, we evaluate the combination effect of Alpelisib and Importazole for PIK3CA helical domain mutant tumors and demonstrate its underlying mechanism.
    Keywords:  Alpelisib; Importazole; PIK3CA-Helical-domain-mutant tumors; p85β
    DOI:  https://doi.org/10.1016/j.bbrc.2025.151324
  2. FASEB J. 2025 Jan 31. 39(2): e70277
      The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models. Ser1261 phosphorylation on mTOR did not respond to insulin in any of our tested models, but instead responded acutely to contractile activity in human and mouse muscle in an AMPK activity-dependent manner. Contraction-stimulated mTOR Ser1261 phosphorylation in mice was decreased by Raptor muscle knockout (mKO) and increased by Raptor muscle overexpression, yet was not affected by Rictor mKO, suggesting most of Ser1261 phosphorylation occurs within mTORC1 in skeletal muscle. In accordance, HEK293 cells mTOR Ser1261Ala mutation strongly impaired phosphorylation of mTORC1 substrates but not mTORC2 substrates. However, neither mTORC1 nor mTORC2-dependent phosphorylations were affected in muscle-specific kinase-dead AMPK mice with no detectable mTOR Ser1261 phosphorylation in skeletal muscle. Thus, mTOR Ser1261 is an exercise but not insulin-responsive AMPK-dependent phosphosite in human and murine skeletal muscle, playing an unclear role in mTORC1 regulation but clearly not required for mTORC2 activity.
    Keywords:  AMPK; exercise; mTORC1; mTORC2; skeletal muscle
    DOI:  https://doi.org/10.1096/fj.202402064R
  3. Nat Methods. 2025 Jan 23.
      Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered. We generated a library of Melt variants with switching temperatures ranging from 30 °C to 40 °C, including two that operate at and above 37 °C. Melt was a highly modular actuator of cell function, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements and cell death. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer. Melt represents a versatile thermogenetic module for straightforward, non-invasive and spatiotemporally defined control of mammalian cells with broad potential for biotechnology and biomedicine.
    DOI:  https://doi.org/10.1038/s41592-024-02572-4
  4. Dev Cell. 2025 Jan 10. pii: S1534-5807(24)00778-0. [Epub ahead of print]
      Embryonic wounds repair rapidly, with no inflammation or scarring. Embryonic wound healing is driven by collective cell movements facilitated by the increase in the volume of the cells adjacent to the wound. The mechanistic target of rapamycin (mTor) complex 1 (TORC1) is associated with cell growth. We found that disrupting TORC1 signaling in Drosophila embryos prevented cell volume increases and slowed down wound repair. Catabolic processes, such as autophagy, can inhibit cell growth. Five-dimensional microscopy demonstrated that the number of autophagosomes decreased during wound repair, suggesting that autophagy must be tightly regulated for rapid wound healing. mTor inhibition increased autophagy, and activating autophagy prevented cell volume expansion and slowed down wound closure. Finally, reducing autophagy in embryos with disrupted TORC1 signaling rescued cell volume changes and rapid wound repair. Together, our results show that TORC1 activation upon wounding negatively regulates autophagy, allowing cells to increase their volumes to facilitate rapid wound healing.
    Keywords:  Drosophila embryo; cell volume; collective cell movement; epithelial morphogenesis; image analysis; quantitative microscopy; wound healing
    DOI:  https://doi.org/10.1016/j.devcel.2024.12.039
  5. Nature. 2025 Jan 22.
      Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context1-4. Yet, most optimal transport applications are unable to incorporate multimodal information or scale to single-cell atlases. Here we introduce multi-omics single-cell optimal transport (moscot), a scalable framework for optimal transport in single-cell genomics that supports multimodality across all applications. We demonstrate the capability of moscot to efficiently reconstruct developmental trajectories of 1.7 million cells from mouse embryos across 20 time points. To illustrate the capability of moscot in space, we enrich spatial transcriptomic datasets by mapping multimodal information from single-cell profiles in a mouse liver sample and align multiple coronal sections of the mouse brain. We present moscot.spatiotemporal, an approach that leverages gene-expression data across both spatial and temporal dimensions to uncover the spatiotemporal dynamics of mouse embryogenesis. We also resolve endocrine-lineage relationships of delta and epsilon cells in a previously unpublished mouse, time-resolved pancreas development dataset using paired measurements of gene expression and chromatin accessibility. Our findings are confirmed through experimental validation of NEUROD2 as a regulator of epsilon progenitor cells in a model of human induced pluripotent stem cell islet cell differentiation. Moscot is available as open-source software, accompanied by extensive documentation.
    DOI:  https://doi.org/10.1038/s41586-024-08453-2
  6. bioRxiv. 2025 Jan 07. pii: 2025.01.06.631605. [Epub ahead of print]
      A lack of tools for detecting receptor activity in vivo has limited our ability to fully explore receptor-level control of developmental patterning. Here, we extend a new class of biosensors for receptor tyrosine kinase (RTK) activity, the pYtag system, to visualize endogenous RTK activity in Drosophila. We build biosensors for three Drosophila RTKs that function across developmental stages and tissues. By characterizing Torso::pYtag during terminal patterning in the early embryo, we find that Torso activity differs from downstream ERK activity in two surprising ways: Torso activity is narrowly restricted to the poles but produces a broader gradient of ERK, and Torso activity decreases over developmental time while ERK activity is sustained. This decrease in Torso activity is driven by ERK pathway-dependent negative feedback. Our results suggest an updated model of terminal patterning where a narrow domain of Torso activity, tuned in amplitude by negative feedback, locally activates signaling effectors which diffuse through the syncytial embryo to form the ERK gradient. Altogether, this work highlights the usefulness of pYtags for investigating receptor-level regulation of developmental patterning.
    Keywords:  Drosophila development; ERK signaling; biosensor; receptor tyrosine kinases
    DOI:  https://doi.org/10.1101/2025.01.06.631605
  7. Biochem Pharmacol. 2025 Jan 15. pii: S0006-2952(25)00018-8. [Epub ahead of print]233 116756
      PTEN, a tumor suppressor phosphatase, regulates cellular functions by antagonizing the growth promoting PI3K/Akt/mTOR pathway through the dephosphorylation of the second messenger PIP3. Many preclinical cellular and animal studies have used PTEN inhibitors to highlight specific disease contexts where acute activation of PI3K/Akt/mTOR pathway might offer therapeutic advantages. In the present study we have re-evaluated first-generation PTEN inhibitors, including established bisperoxo-vanadium(V) complexes (bpVs). In vitro, all compounds tested inhibited PTEN with IC50 values between 0.2-0.8 μM, although their activity diminished under reducing conditions. bpV(phen) and bpV(HΟpic) significantly increased pSer473Akt levels in PTEN wild-type cells while bpV(phen) induced phosphorylation in PTEN null cells upon re-expression of functional PTEN. bpV(ΗΟpic) was less specific since it also triggered PTEN-independent Erk1/2 phosphorylation. In vivo, bpV(phen) administration in Wistar rats enhanced pS6 levels in kidney and liver tissues, but not in several CNS tissues, and led to reduced locomotion and exploratory behaviour in the open field test. The consensus mechanism of action of first generation PTEN inhibitors appears to be oxidative inhibition, however bpV(phen) does not induce oxidation of cellular endogenous PTEN. Instead, our findings suggest that the inhibition of PTEN by bpV(phen) in cells and in vivo may proceed through a mechanism involving non-specific S-nitrosylation of PTEN. Our study highlights the complexity of PTEN inhibition by first-generation compounds and their limitations, such as low specificity, adverse effects and non-specific mechanisms of action, and emphasizes the need for developing more selective and potent PTEN inhibitors with improved efficacy and well-defined mechanisms of actions.
    Keywords:  Akt; Nitrosylation; Oxidation; PI3K; Phosphatase inhibitor; Signaling
    DOI:  https://doi.org/10.1016/j.bcp.2025.116756
  8. Lab Chip. 2025 Jan 23.
      A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems. Using genetically engineered human umbilical vein endothelial cells (HUVECs) and induced pluripotent stem cell (iPSC)-derived ECs (iECs) to express the recurrent TIE2L914F VM mutation we assessed responses on EC orientation and area, actin organization, and Golgi polarization to uni- and bidirectional flow and varying WSS. Comparison of control and TIE2L914F expressing ECs showed differential cellular responses to flow and WSS in terms of cell shape elongation, orientation of F-actin, and Golgi polarization, indicating altered mechanosensory or mechanotransduction signaling pathways in the presence of the VM causative mutation. The data also revealed significant differences in how the primary and iPSC-derived iECs responded to flow. As a conclusion, the developed microfluidic platform allowed simulation of multiple flow conditions in a scalable and pumpless format. The design made it a desirable tool for studying different EC types as well as cellular changes in vascular disease. The platform should offer new opportunities for biomechanical research by providing a controlled environment to analyze the flow-dependent mechanosensory pathways in ECs.
    DOI:  https://doi.org/10.1039/d4lc00824c
  9. PLoS Comput Biol. 2025 Jan;21(1): e1012752
      Single-cell transcriptomics experiments provide gene expression snapshots of heterogeneous cell populations across cell states. These snapshots have been used to infer trajectories and dynamic information even without intensive, time-series data by ordering cells according to gene expression similarity. However, while single-cell snapshots sometimes offer valuable insights into dynamic processes, current methods for ordering cells are limited by descriptive notions of "pseudotime" that lack intrinsic physical meaning. Instead of pseudotime, we propose inference of "process time" via a principled modeling approach to formulating trajectories and inferring latent variables corresponding to timing of cells subject to a biophysical process. Our implementation of this approach, called Chronocell, provides a biophysical formulation of trajectories built on cell state transitions. The Chronocell model is identifiable, making parameter inference meaningful. Furthermore, Chronocell can interpolate between trajectory inference, when cell states lie on a continuum, and clustering, when cells cluster into discrete states. By using a variety of datasets ranging from cluster-like to continuous, we show that Chronocell enables us to assess the suitability of datasets and reveals distinct cellular distributions along process time that are consistent with biological process times. We also compare our parameter estimates of degradation rates to those derived from metabolic labeling datasets, thereby showcasing the biophysical utility of Chronocell. Nevertheless, based on performance characterization on simulations, we find that process time inference can be challenging, highlighting the importance of dataset quality and careful model assessment.
    DOI:  https://doi.org/10.1371/journal.pcbi.1012752
  10. J Exp Med. 2025 Mar 03. pii: e20241147. [Epub ahead of print]222(3):
      BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells. Silencing PTPN23 selectively kills BRAF-mutant melanoma cells but not those with wild-type BRAF. Mechanistically, PTPN23, a catalytically inactive phosphatase, intriguingly induces WNK3-mediated phosphorylation of phosphoinositide 3-kinase class II alpha (PI3KC2α) at serine 329, enhancing its catalytic activity. This activation promotes production of PI(3,4)P2 and subsequent AKT2 activation at endosomes to support cell survival. Genetic or pharmacological targeting of the PTPN23-PI3KC2α-AKT2 signaling axis, alone or in combination with BRAF inhibitors, effectively inhibits the growth of BRAF-mutant melanoma and other cancers in vitro and in vivo. We also demonstrate that melanocyte-specific knockout of PTPN23 significantly inhibits BRAFV600E-driven melanomagenesis. Altogether, our findings demonstrate that targeting PTPN23/PI3KC2α offers a new and viable therapeutic strategy for BRAF-mutant cancers.
    DOI:  https://doi.org/10.1084/jem.20241147
  11. Trends Mol Med. 2025 Jan 21. pii: S1471-4914(25)00002-4. [Epub ahead of print]
      Biological sex strongly impacts tuberous sclerosis complex (TSC) symptoms like epilepsy and autism. However, the mechanisms driving this influence remain largely unknown. Here, we discuss how sex-specific changes in brain synapses and neural networks may drive these differences, offering insights that could be crucial for developing targeted therapies for TSC.
    Keywords:  autism spectrum disorder; epilepsy; sex dimorphism; tuberous sclerosis complex
    DOI:  https://doi.org/10.1016/j.molmed.2025.01.002
  12. Nature. 2025 Jan 22.
      
    Keywords:  Cell biology; Computational biology and bioinformatics; Machine learning
    DOI:  https://doi.org/10.1038/d41586-025-00107-1
  13. Commun Biol. 2025 Jan 22. 8(1): 109
      Protein kinases play crucial roles in regulating cellular processes, making real-time visualization of their activity essential for understanding signaling dynamics. While genetically encoded fluorescent biosensors have emerged as powerful tools for studying kinase activity, their development for many kinases remains challenging due to the lack of suitable substrate peptides. Here, we present a novel approach for identifying peptide substrates and demonstrate its effectiveness by developing a biosensor for Protein Kinase N (PKN) activity. Our method identified a new PKN substrate peptide that we optimized for use in a fluorescent biosensor design. The resulting biosensor shows specificity for PKN family kinases and can detect both overexpressed and endogenous PKN activity in live cells. Importantly, our biosensor revealed sustained basal PKN2 activity at the plasma membrane, identifying it as a PKN2 activity hotspot. This work not only provides a valuable tool for studying PKN signaling but also demonstrates a promising strategy for developing biosensors for other understudied kinases, potentially expanding our ability to monitor kinase activity across the human kinome.
    DOI:  https://doi.org/10.1038/s42003-025-07510-4
  14. Br J Clin Pharmacol. 2025 Jan 23.
      Severe forms of vascular malformations (VM) can highly impact patients' quality of life and lead to life-threatening organ dysfunction. Numerous VM are caused by somatic activating mutations in the PI3K/AKT/mTOR signalling pathway. Alpelisib, a PIK3CA inhibitor was recently FDA-approved for paediatric PIK3CA-related overgrowth syndrome (PROS). However, an empiric and fixed dose of 50 mg was selected, irrespective of weight, in the absence of any pharmacokinetic (PK) data. We aim to report novel alpelisib PK data in children to support dosing decisions. Nine patients with severe VM (PROS: n = 4, other VM: n = 5) were included. Mean age was 10.5 years (SD = 5.2 years), and mean weight was 43 kg (SD = 24 kg). AUC on the fixed dose of 50 mg/day was highly variable (mean = 7035 ng*h/mL, SD = 4057, CV = 58%). AUC was correlated with weight. As short- and long-term adverse effects to alpelisib in children are unknown, a dosing based on PK data is urgently needed.
    Keywords:  children; drug utilization; pharmacokinetics; therapeutic drug monitoring; vascular anomalies; vascular disease
    DOI:  https://doi.org/10.1111/bcp.16388
  15. Biophys Rev. 2024 Dec;16(6): 875-882
      Mechanosensitivity is the ability of cells to sense and respond to mechanical stimuli. In order to do this, cells are endowed with different components that allow them to react to a broad range of stimuli, such as compression or shear forces, pressure, and vibrations. This sensing process, mechanosensing, is involved in fundamental physiological mechanisms, such as stem cell differentiation and migration, but it is also central to the development of pathogenic states. Here, we review the approaches that have been proposed to quantify mechanosensation in living cells, with a specific focus on methodologies that enable higher experimental throughput. This aspect is crucial to fully understand the nuances of mechanosensation and how it impacts the physiology and pathology of living systems. We will discuss traditional methods for studying mechanosensing at the level of single cells, with particular attention to the activation of the mechanosensitive ion channel piezo1. Moreover, we will present recent attempts to push the analysis towards higher throughput.
    Keywords:  Atomic force microscopy; Cell mechanics; Mechanobiology; Mechanosensitivity; Piezo1
    DOI:  https://doi.org/10.1007/s12551-024-01263-w
  16. Nature. 2025 Jan 20.
      
    Keywords:  Authorship; Careers; Publishing; Scientific community
    DOI:  https://doi.org/10.1038/d41586-024-04253-w
  17. J Sport Health Sci. 2025 Jan 16. pii: S2095-2546(25)00001-8. [Epub ahead of print] 101023
       BACKGROUND: Elucidating mechanisms underlying atrial myopathy, which predisposes individuals to atrial fibrillation (AF), will be critical for preventing/treating AF. In a serendipitous discovery, we identified atrial enlargement, fibrosis, and thrombi in mice with reduced phosphoinositide 3-kinase (PI3K) in cardiomyocytes. PI3K(p110α) is elevated in the heart with exercise and is critical for exercise-induced ventricular enlargement and protection, but the role in the atria was unknown. Physical inactivity and extreme endurance exercise can increase AF risk. Therefore, our objective was to investigate whether too little and/or too much PI3K alone induces cardiac pathology.
    METHODS: New cardiomyocyte-specific transgenic mice with increased or decreased PI3K(p110α) activity were generated. Multi-omics was conducted in mouse atrial tissue, and lipidomics in human plasma.
    RESULTS: Elevated PI3K led to an increase in heart size with preserved/enhanced function. Reduced PI3K led to atrial dysfunction, fibrosis, arrhythmia, increased susceptibility to atrial enlargement and thrombi, and dysregulation of monosialodihexosylganglioside (GM3), a lipid that regulates insulin-like growth factor-1 (IGF1)-PI3K signaling. Proteomic profiling identified distinct signatures and signaling networks across atria with varying degrees of dysfunction, enlargement, and thrombi, including commonalities with the human AF proteome. PI3K-related lipids were dysregulated in plasma from athletes with AF.
    CONCLUSION: PI3K(p110α) is a critical regulator of atrial biology and function in mice. This work provides a proteomic resource of candidates for further validation as potential new drug targets and biomarkers for atrial myopathy. Further investigation of PI3K-related lipids as markers for identifying individuals at risk of AF is warranted. Dysregulation of PI3K may contribute to the association between increased cardiac risk with physical inactivity and extreme endurance exercise.
    Keywords:  Atrial fibrillation; Atrial myopathy; Exercise; Lipidomics; Proteomics
    DOI:  https://doi.org/10.1016/j.jshs.2025.101023