bims-pimaco Biomed News
on PI3K and MAPK signalling in colorectal cancer
Issue of 2021‒05‒02
fourteen papers selected by
Lucas B. Zeiger
Beatson Institute for Cancer Research


  1. SLAS Discov. 2021 Apr 24. 24725552211008853
      Oncogenic forms of KRAS proteins are known to be drivers of pancreatic, colorectal, and lung cancers. The goal of this study is to identify chemical leads that inhibit oncogenic KRAS signaling. We first developed an isogenic panel of mouse embryonic fibroblast (MEF) cell lines that carry wild-type RAS, oncogenic KRAS, and oncogenic BRAF. We validated these cell lines by screening against a tool compound library of 1402 annotated inhibitors in an adenosine triphosphate (ATP)-based cell viability assay. Subsequently, this MEF panel was used to conduct a high-throughput phenotypic screen in a cell viability assay with a proprietary compound library. All 126 compounds that exhibited a selective activity against mutant KRAS were selected and prioritized based on their activities in secondary assays. Finally, five chemical clusters were chosen. They had specific activity against SW620 and LS513 over Colo320 colorectal cancer cell lines. In addition, they had no effects on BRAFV600E, MEK1, extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3-kinase alpha (PI3Kα), AKT1, or mammalian target of rapamycin (mTOR) as tested in in vitro enzymatic activity assays. Biophysical assays demonstrated that these compounds did not bind directly to KRAS. We further identified the mechanism of action and showed that three of them have CDK9 inhibitory activity. In conclusion, we have developed and validated an isogenic MEF panel that was used successfully to identify RAS oncogenic or wild-type allele-specific vulnerabilities. Furthermore, we identified sensitivity of oncogenic KRAS-expressing cells to CDK9 inhibitors, which warrants future studies of treating KRAS-driven cancers with CDK9 inhibitors.
    Keywords:  CDK9; KRAS; isogenic cell panel; phenotypic high-throughput screen; synthetic lethality
    DOI:  https://doi.org/10.1177/24725552211008853
  2. Cancers (Basel). 2021 Apr 13. pii: 1852. [Epub ahead of print]13(8):
      Oncogenic mutations in RAS family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic HrasG12V-driven undifferentiated pleomorphic sarcoma metastasis and of KrasG12D-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance. The prior evolution of resistance to either single agent frequently leads to resistance to dual treatment. Dual MEK inhibitor plus ERK inhibitor therapy shows anti-tumor efficacy in an HrasG12V-driven autochthonous sarcoma model but features of drug resistance in vivo were also evident. Array-based kinome activity profiling revealed an absence of common patterns of signaling rewiring in single or double MEK and ERK inhibitor resistant cells, showing that the development of resistance to downstream signaling inhibition in oncogenic RAS-driven tumors represents a heterogeneous process. Nonetheless, in some single and double MEK and ERK inhibitor resistant cell lines we identified newly acquired drug sensitivities. These may represent additional therapeutic targets in oncogenic RAS-driven tumors and provide general proof-of-principle that therapeutic vulnerabilities of drug resistant cells can be identified.
    Keywords:  ERK inhibitor; MEK inhibitor; drug resistance; metastasis; mouse tumor model; oncogenic RAS; pancreatic ductal adenocarcinoma; undifferentiated pleomorphic sarcoma
    DOI:  https://doi.org/10.3390/cancers13081852
  3. Cancer Sci. 2021 May 01.
      Wnt, PI3K-Akt-mTOR and NF-κB pathways were reported to be involved in DNA damage repair (DDR). DDR deficient cancers become critically dependent on backup DNA repair pathways. Neuritin 1 (NRN1) is reported to be involved in PI3K-Akt-mTOR, and its role in DDR remains unclear. Methylation-specific PCR, siRNA, flow cytometry, esophageal cancer cell lines and xenograft mouse models were used to examine the role of NRN1 in esophageal cancer. The expression of NRN1 is frequently repressed by promoter region methylation in human esophageal cancer cells. NRN1 was methylated in 50.4% (510/1012) of primary esophageal cancer samples. NRN1 methylation is associated significantly with age (p<0.001), tumor size (p<0.01), TNM stage (p<0.001), differentiation (p<0.001) and alcohol consumption (p<0.05). We found NRN1 methylation is an independent prognostic factor for poor 5-years OS (p<0.001). NRN1 inhibits colony formation, cell proliferation, migration and invasion, and induces apoptosis and G1/S arrest in esophageal cancer cells. NRN1 suppresses KYSE150 and KYSE30 cells xenografts growth in nude mice. PI3K signaling is reported to activate ATR signaling by targeting CHK1, the downstream component of ATR. By analyzing the synthetic efficiency of NVP-BEZ235 (PI3K inhibitor) and VE-822 (an ATR inhibitor), we found that combination of NVP-BEZ235 and VE-822 increased cytotoxicity in NRN1 methylated esophageal cancer cells, as well as KYSE150 cell xenografts. In conclusions, NRN1 suppresses esophageal cancer growth both in vitro and in vivo by inhibiting PI3K-Akt-mTOR signaling. Methylation of NRN1 is a novel synthetic lethal marker for PI3K-Akt-mTOR and ATR inhibitors in human esophageal cancer.
    Keywords:  ATR inhibitor; DNA Damage Repair; DNA methylation; NRN1; PI3K signaling
    DOI:  https://doi.org/10.1111/cas.14917
  4. Mol Cancer Res. 2021 Apr 30. pii: molcanres.1066.2020. [Epub ahead of print]
      The phosphoinositol-3 kinase (PI3K)-AKT pathway is one of the most mutated in human cancers, predominantly associated with the loss of the signaling antagonist, PTEN, and to lesser extents, with gain-of-function mutations in PIK3CA (encoding PI3K-p110α) and AKT1. In addition, most oncogenic driver pathways activate PI3K/AKT signaling. Nonetheless, drugs targeting PI3K or AKT have fared poorly against solid tumors in clinical trials as monotherapies, yet some have shown efficacy when combined with inhibitors of other oncogenic drivers, such as receptor tyrosine kinases or nuclear hormone receptors. There is growing evidence that AKT isoforms, AKT1, AKT2, and AKT3, have different, often distinct roles in either promoting or suppressing specific parameters of oncogenic progression, yet few if any isoform-preferred substrates have been characterized. This review will describe recent data showing that the differential activation of AKT isoforms is mediated by complex interplays between PTEN, PI3K isoforms and upstream tyrosine kinases, and that the efficacy of PI3K/AKT inhibitors will likely depend on the successful targeting of specific AKT isoforms and their preferred pathways.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-1066
  5. Med Res Rev. 2021 Apr 29.
      Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising drug targets in the search for novel therapeutic strategies that are able to overcome resistance to anti-EGFR treatment. Co-targeting EGFR and the PI3K/Akt pathway can lead to synergistic drug interactions, possibly restoring sensitivity to EGFR inhibitors and hereby improving clinical efficacy. Better understanding of the predictive value of PI3K/Akt pathway alterations is needed to allow the identification of patient populations that might benefit most from these combination strategies.
    Keywords:  HNSCC; PI3K/Akt pathway inhibitors; cetuximab; combination therapy; targeted therapy; therapeutic resistance
    DOI:  https://doi.org/10.1002/med.21806
  6. Cancers (Basel). 2021 Apr 17. pii: 1941. [Epub ahead of print]13(8):
      The prognosis of patients with metastatic colorectal cancer (mCRC) who progressed to the first and the second lines of treatment is poor. Thus, new therapeutic strategies are needed. During the last years, emerging evidence suggests that retreatment with anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MAbs) in the third line of mCRC patients, that have previously obtained clinical benefit by first-line therapy with anti-EGFR MAbs plus chemotherapy, could lead to prolonged survival. The rationale beyond this "rechallenge" strategy is that, after disease progression to first line EGFR-based therapy, a treatment break from anti-EGFR drugs results in RAS mutant cancer cell decay, restoring the sensitivity of cancer cells to cetuximab and panitumumab. In fact, rechallenge treatment with anti-EGFR drugs has shown promising clinical activity, particularly in patients with plasma RAS and BRAF wild type circulating tumor DNA, as defined by liquid biopsy analysis at baseline treatment. The aim of this review is to analyze the current knowledge on rechallenge and to investigate the role of novel biomarkers that can guide the appropriate selection of patients that could benefit from this therapeutic strategy. Finally, we discuss on-going trials and future perspectives.
    Keywords:  anti-EGFR monoclonal antibodies; metastatic colorectal cancer; rechallenge
    DOI:  https://doi.org/10.3390/cancers13081941
  7. Proc Natl Acad Sci U S A. 2021 May 04. pii: e2101027118. [Epub ahead of print]118(18):
      Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.
    Keywords:  Ras; Sos; peptide; proteomimetic
    DOI:  https://doi.org/10.1073/pnas.2101027118
  8. Genes (Basel). 2021 Apr 28. pii: 662. [Epub ahead of print]12(5):
      The RAS family of oncogenes (HRAS, NRAS, and KRAS) are among the most frequently mutated protein families in cancers. RAS-mutated tumors were originally thought to proliferate independently of upstream signaling inputs, but we now know that non-mutated wild-type (WT) RAS proteins play an important role in modulating downstream effector signaling and driving therapeutic resistance in RAS-mutated cancers. This modulation is complex as different WT RAS family members have opposing functions. The protein product of the WT RAS allele of the same isoform as mutated RAS is often tumor-suppressive and lost during tumor progression. In contrast, RTK-dependent activation of the WT RAS proteins from the two non-mutated WT RAS family members is tumor-promoting. Further, rebound activation of RTK-WT RAS signaling underlies therapeutic resistance to targeted therapeutics in RAS-mutated cancers. The contributions of WT RAS to proliferation and transformation in RAS-mutated cancer cells places renewed interest in upstream signaling molecules, including the phosphatase/adaptor SHP2 and the RasGEFs SOS1 and SOS2, as potential therapeutic targets in RAS-mutated cancers.
    Keywords:  HRAS; KRAS; NRAS; RAS; RTK; SHP2; SOS1; SOS2; resistance
    DOI:  https://doi.org/10.3390/genes12050662
  9. Future Oncol. 2021 Apr 28.
      The aim of this study was to analyze the correlations between NAT1 and clinicopathological features of and prognosis in colorectal cancer (CRC). RNA sequencing data and clinical information were retrieved from The Cancer Genome Atlas database. Wilcoxon test, logistic regression and Kaplan-Meier method were used to estimate the association between NAT1 and prognosis in CRC. In vitro experiments were conducted to confirm the role of NAT1. NAT1 is significantly less expressed in CRC and independently associated with poor prognosis in CRC patients. The authors further confirmed that expression of NAT1 was significantly lower in SW116 colon cancer cells than in NCM460 cells. Overexpressed NAT1 obviously inhibited the growth of CRC cells by downregulating phosphorylation of the PI3K/Akt/mTOR signaling pathway. NAT1 may be a potential therapeutic target for CRC.
    Keywords:  NAT1; Oncomine; PI3K/Akt/mTOR; TCGA; colorectal cancer; prognosis
    DOI:  https://doi.org/10.2217/fon-2020-0992
  10. Lab Invest. 2021 Apr 28.
      Mutations in RAS or BRAF are associated with poor prognosis and resistance to epidermal growth factor receptor (EGFR)-targeted therapy in colorectal cancer (CRC). Despite their common ability to activate downstream genes such as MEK and ERK, the therapeutic benefit of MEK inhibitors for patients with RAS/BRAF mutant CRC is limited, highlighting the need for biomarkers to predict the efficacy of MEK inhibition. Previously, we reported that a change in phosphorylation of ribosomal protein S6 (pS6) after MEK inhibition was significantly associated with sensitivity to MEK inhibition in gastric cancer cells. Here, we investigated the value of the response in pS6 for predicting the efficacy of trametinib, a MEK inhibitor, in patients with RAS/BRAF mutant CRC using patient-derived CRC organoids. We found that a subset of CRC cell lines and organoids were sensitive to trametinib. The change in phosphorylated ERK, a downstream molecule of the RAS/RAF/MEK pathway, was not significantly associated with trametinib sensitivity. On the other hand, only those with sensitivity showed a reduction of pS6 levels in response to trametinib. The change in pS6 after trametinib treatment was detectable by Western blotting, immunohistochemistry or immunocytochemistry. We also demonstrated an impact of MEK inhibition on pS6 in vivo using a xenograft model. Our data suggest that, in combination with patient-derived organoids, immunostaining-based detection of pS6 could be useful for prediction of trametinib sensitivity.
    DOI:  https://doi.org/10.1038/s41374-021-00590-w
  11. Biomolecules. 2021 Apr 28. pii: 652. [Epub ahead of print]11(5):
      The Warburg effect has been considered a potential therapeutic target to fight against cancer progression. In KRAS mutant cells, PKM2 (pyruvate kinase isozyme M2) is hyper-activated, and it induces GLUT1 expression; therefore, KRAS has been closely involved in the initiation of Warburg metabolism. Although mTOR (mammalian target of rapamycin), a well-known inhibitor of autophagy-dependent survival in physiological conditions, is also activated in KRAS mutants, many recent studies have revealed that autophagy becomes hyper-active in KRAS mutant cancer cells. In the present study, a mathematical model was built containing the main elements of the regulatory network in KRAS mutant cancer cells to explore the further possible therapeutic strategies. Our dynamical analysis suggests that the downregulation of KRAS, mTOR and autophagy are crucial in anti-cancer therapy. PKM2 has been assumed to be the key switch in the stress response mechanism. We predicted that the addition of both pharmacologic ascorbate and chloroquine is able to block both KRAS and mTOR pathways: in this case, no GLUT1 expression is observed, meanwhile autophagy, essential for KRAS mutant cancer cells, is blocked. Corresponding to our system biological analysis, this combined pharmacologic ascorbate and chloroquine treatment in KRAS mutant cancers might be a therapeutic approach in anti-cancer therapies.
    Keywords:  GLUT1; PKM2; Warburg effect; ascorbate; autophagy; cancer; chloroquine; mutant KRAS; systems biology
    DOI:  https://doi.org/10.3390/biom11050652
  12. Oncogenesis. 2021 Apr 30. 10(4): 34
      The PI3K pathway is one of the most deregulated pathways in cancer, which is predominantly due to gain of function mutations or altered expression of the PI3KCA gene. This is codified by what is seen for the class I PI3K catalytic subunit p110α, a common feature of many cancers. The metastasis suppressor protein NM23-H1 (NME1), whose ability to suppress the metastasis activities of different tumors has been widely described and was previously reported to alter phosphatidylinositol signaling. Here, we show interaction of NM23-H1 with the p110α subunit and the functional consequence of this interaction. This interaction is predominantly localized at the plasma membrane with some signals seen in the cytoplasmic compartment. Analysis of NM23-H1 levels showed a negative correlation between NM23-H1 expression and Akt phosphorylation, the key marker of PI3K pathway activation. Investigating the functional consequence of this interaction using cell motility and clonogenicity assays showed that expression of NM23-H1 reversed the enhanced migration, invasion, adhesion, and filopodia structure formation in cells expressing the p110α catalytic subunit. A similar trend was seen in anchorage-independent assays. Notably, differential analyses using NM23-H1 mutants which lacked the enzymatic and metastasis suppressor activity, showed no detectable interaction between p110α and the NM23-H1 mutant proteins P96S, H118F, and S120G, as well as no dysregulation of the PI3K-AKT axis.
    DOI:  https://doi.org/10.1038/s41389-021-00326-x
  13. Genes (Basel). 2021 Apr 10. pii: 553. [Epub ahead of print]12(4):
      Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.
    Keywords:  ASK; MST2; PLK; RAF kinase-independent; RAS; RHO-α; apoptosis; cancer therapy; cell cycle
    DOI:  https://doi.org/10.3390/genes12040553
  14. Acta Pharmacol Sin. 2021 Apr 30.
      The PTEN/AKT/mTOR signaling pathway is frequently dysregulated in non-small cell lung cancer (NSCLC), but the mechanisms are not well-understood. The present study found that the ubiquitin ligase TRIM25 is highly expressed in NSCLC tissues and promotes NSCLC cell survival and tumor growth. Mechanistic studies revealed that TRIM25 binds to PTEN and mediates its K63-linked ubiquitination at K266. This modification prevents the plasma membrane translocation of PTEN and reduces its phosphatase activity therefore accumulating PI(3,4,5)P3. TRIM25 thus activates the AKT/mTOR signaling. Moreover, we found that the antibacterial nitroxoline can activate PTEN by reducing its K63-linked polyubiquitination and sensitizes NSCLC to cisplatin-induced apoptosis. This study thus identified a novel modulation on the PTEN signaling pathway by TRIM25 and provides a potential target for NSCLC treatment.
    Keywords:  K63-linked polyubiquitination; PTEN; TRIM25; non-small cell lung cancer
    DOI:  https://doi.org/10.1038/s41401-021-00662-z