bims-pimaco Biomed News
on PI3K and MAPK signalling in colorectal cancer
Issue of 2023–10–29
four papers selected by
Lucas B. Zeiger, CRUK Scotland Institute, Beatson Institute for Cancer Research



  1. Cell. 2023 Oct 18. pii: S0092-8674(23)01081-4. [Epub ahead of print]
      Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
    Keywords:  catabolism; functional proteomics; live correlative light and electron microscopy; lysosomes; mTOR; myotubularin; nutrient signaling; nutrients; phosphoinositides
    DOI:  https://doi.org/10.1016/j.cell.2023.09.027
  2. Cells. 2023 Oct 23. pii: 2504. [Epub ahead of print]12(20):
      The mTOR signaling pathway integrates signaling inputs from nutrients, including glucose and amino acids, which are precisely regulated by transporters depending on nutrient levels. The L-type amino acid transporter 1 (LAT1) affects the activity of mTORC1 through upstream regulators that sense intracellular amino acid levels. While mTORC1 activation by LAT1 has been thoroughly investigated in cultured cells, the effects of LAT1 expression on the activity of mTORC2 has scarcely been studied. Here, we provide evidence that LAT1 recruits and activates mTORC2 on the lysosome for PMA-induced cell migration. LAT1 is translocated to the lysosomes in cells treated with PMA in a dose- and time-dependent manner. Lysosomal LAT1 interacted with mTORC2 through a direct interaction with Rictor, leading to the lysosomal localization of mTORC2. Furthermore, the depletion of LAT1 reduced PMA-induced cell migration in a wound-healing assay. Consistent with these results, the LAT1 N3KR mutant, which is defective in PMA-induced endocytosis and lysosomal localization, did not induce mTORC2 recruitment to the lysosome, with the activation of mTORC2 determined via Akt phosphorylation or the LAT1-mediated promotion of cell migration. Taken together, lysosomal LAT1 recruits and activates the mTORC2 complex and downstream Akt for PMA-mediated cell migration. These results provide insights into the development of therapeutic drugs targeting the LAT1 amino acid transporter to block metastasis, as well as disease progression in various types of cancer.
    Keywords:  LAT1; PMA; cell migration; mTORC2
    DOI:  https://doi.org/10.3390/cells12202504
  3. Biochim Biophys Acta Gen Subj. 2023 Oct 20. pii: S0304-4165(23)00194-0. [Epub ahead of print] 130496
      Intestinal epithelial differentiation is a highly organised process. It is influenced by a variety of signalling pathways and enzymes, such as the PI3K pathway and soluble epoxide hydrolase (sEH) from arachidonic acid metabolism. We investigated the changes in the expression of enzymes and lipid messenger from the PI3K pathway, including PTEN, during intestinal cell differentiation in vitro using HT-29 and Caco2 cells and compared them with immunohistochemical patterns of these proteins in human colon. To investigate the possible crosstalk between the PI3K pathway and sEH, we treated HT-29 and Caco2 cells with the sEH inhibitor TPPU. Administration of TPPU to differentiated cells decreased the expression of PTEN, thus reversing the change in its expression observed during cell differentiation. In addition, multiplex immunofluorescence staining confirmed the relationship between the expression of PTEN and villin, a marker of intestinal cell differentiation, ranging from a moderate correlation in undifferentiated cells to a very strong correlation in differentiated cells treated with TPPU. Furthermore, we confirm that PTEN and sEH mirrored their expression patterns in samples of prenatal and adult human intestine compared to tumours using immunohistochemical staining. Taken together, it appears that PTEN and sEH cooperate in the process of intestinal cell differentiation. A better understanding of the crosstalk between the PI3K pathway and sEH and its consequences for cell differentiation is highly desirable, as several sEH inhibitors are under clinical investigation for the treatment of various diseases.
    Keywords:  Arachidonic acid; Differentiation; Human prenatal tissue samples; Intestinal epithelium; PI3K pathway; Soluble epoxide hydrolase
    DOI:  https://doi.org/10.1016/j.bbagen.2023.130496