bims-plasge Biomed News
on Plastid genes
Issue of 2021‒02‒14
three papers selected by
Vera S. Bogdanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences


  1. Front Plant Sci. 2020 ;11 632420
      Postzygotic reproductive isolation maintains species integrity and uniformity and contributes to speciation by restricting the free gene flow between divergent species. In this study we identify causal genes of two Mendelian factors S22A and S22B on rice chromosome 2 inducing F1 pollen sterility in hybrids between Oryza sativa japonica-type cultivar Taichung 65 (T65) and a wild relative of rice species Oryza glumaepatula. The causal gene of S22B in T65 encodes a protein containing DUF1668 and gametophytically expressed in the anthers, designated S22B_j. The O. glumaepatula allele S22B-g, allelic to S22B_j, possesses three non-synonymous substitutions and a 2-bp deletion, leading to a frameshifted translation at the S22B C-terminal region. Transcription level of S22B-j and/or S22B_g did not solely determine the fertility of pollen grains by genotypes at S22B. Western blotting of S22B found that one major band with approximately 46 kDa appeared only at the mature stage and was reduced on semi-sterile heterozygotes at S22B, implying that the 46 kDa band may associated in hybrid sterility. In addition, causal genes of S22A in T65 were found to be S22A_j1 and S22A_j3 encoding DUF1668-containing protein. The allele of a wild rice species Oryza meridionalis Ng at S22B, designated S22B_m, is a loss-of-function allele probably due to large deletion of the gene lacking DUF1668 domain and evolved from the different lineage of O. glumaepatula. Phylogenetic analysis of DUF1668 suggested that many gene duplications occurred before the divergence of current crops in Poaceae, and loss-of-function mutations of DUF1668-containing genes represent the candidate causal genetic events contributing to hybrid incompatibilities. The duplicated DUF1668-domain gene may provide genetic potential to induce hybrid incompatibility by consequent mutations after divergence.
    Keywords:  DUF1668; Oryza; domain unknown function; hybrid incompatibility; pollen sterility; reproductive isolation; rice
    DOI:  https://doi.org/10.3389/fpls.2020.632420
  2. Front Plant Sci. 2020 ;11 589189
      Food legumes are important for defeating malnutrition and sustaining agri-food systems globally. Breeding efforts in legume crops have been largely confined to the exploitation of genetic variation available within the primary genepool, resulting in narrow genetic base. Introgression as a breeding scheme has been remarkably successful for an array of inheritance and molecular studies in food legumes. Crop wild relatives (CWRs), landraces, and exotic germplasm offer great potential for introgression of novel variation not only to widen the genetic base of the elite genepool for continuous incremental gains over breeding cycles but also to discover the cryptic genetic variation hitherto unexpressed. CWRs also harbor positive quantitative trait loci (QTLs) for improving agronomic traits. However, for transferring polygenic traits, "specialized population concept" has been advocated for transferring QTLs from CWR into elite backgrounds. Recently, introgression breeding has been successful in developing improved cultivars in chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), peanut (Arachis hypogaea), lentil (Lens culinaris), mungbean (Vigna radiata), urdbean (Vigna mungo), and common bean (Phaseolus vulgaris). Successful examples indicated that the usable genetic variation could be exploited by unleashing new gene recombination and hidden variability even in late filial generations. In mungbean alone, distant hybridization has been deployed to develop seven improved commercial cultivars, whereas in urdbean, three such cultivars have been reported. Similarly, in chickpea, three superior cultivars have been developed from crosses between C. arietinum and Cicer reticulatum. Pigeonpea has benefited the most where different cytoplasmic male sterility genes have been transferred from CWRs, whereas a number of disease-resistant germplasm have also been developed in Phaseolus. As vertical gene transfer has resulted in most of the useful gene introgressions of practical importance in food legumes, the horizontal gene transfer through transgenic technology, somatic hybridization, and, more recently, intragenesis also offer promise. The gains through introgression breeding are significant and underline the need of bringing it in the purview of mainstream breeding while deploying tools and techniques to increase the recombination rate in wide crosses and reduce the linkage drag. The resurgence of interest in introgression breeding needs to be capitalized for development of commercial food legume cultivars.
    Keywords:  breeding populations; distant hybridization; food legumes; introgression line; pre-breeding
    DOI:  https://doi.org/10.3389/fpls.2020.589189
  3. J Exp Bot. 2021 Feb 09. pii: eraa571. [Epub ahead of print]
      Pea is a legume crop producing protein-rich seeds and is increasingly in demand for human consumption and animal feed. The aim of this study was to explore the proteome of developing pea seeds at three key stages covering embryogenesis, the transition to seed-filling, and the beginning of storage-protein synthesis, and to investigate how the proteome was influenced by S deficiency and water stress, applied either separately or combined. Of the 3184 proteins quantified by shotgun proteomics, 2473 accumulated at particular stages, thus providing insights into the proteome dynamics at these stages. Differential analyses in response to the stresses and inference of a protein network using the whole proteomics dataset identified a cluster of antioxidant proteins (including a glutathione S-transferase, a methionine sulfoxide reductase, and a thioredoxin) possibly involved in maintaining redox homeostasis during early seed development and preventing cellular damage under stress conditions. Integration of the proteomics data with previously obtained transcriptomics data at the transition to seed-filling revealed the transcriptional events associated with the accumulation of the stress-regulated antioxidant proteins. This transcriptional defense response involves genes of sulfate homeostasis and assimilation, thus providing candidates for targeted studies aimed at dissecting the signaling cascade linking S metabolism to antioxidant processes in developing seeds.
    Keywords:   Pisum sativum ; Abiotic stresses; omics integration; pea; protein network; proteomics; redox balance; seed development; shotgun; sulfur; water stress
    DOI:  https://doi.org/10.1093/jxb/eraa571