bims-plasge Biomed News
on Plastid genes
Issue of 2024‒01‒14
four papers selected by
Vera S. Bogdanova, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences



  1. Front Plant Sci. 2023 ;14 1320506
      Well-performing genomic prediction (GP) models for polygenic traits and molecular marker sets for oligogenic traits could be useful for identifying promising genetic resources in germplasm collections, setting core collections, and establishing molecular variety distinction. This study aimed at (i) defining GP models and key marker sets for predicting 15 agronomic or morphological traits in germplasm collections, (ii) verifying the GP model usefulness also for selection in breeding programs, (iii) investigating the consistency between molecular and phenotypic diversity patterns, and (iv) identifying genomic regions associated with to the target traits. The study was based on phenotyping data and over 41,000 genotyping-by-sequencing-generated SNP markers of 220 landraces or old cultivars belonging to a world germplasm collection and 11 modern cultivars. Non-metric multi-dimensional scaling (NMDS) and an analysis of population genetic structure indicated a high level of genetic differentiation of material from Western Asia, a major West-East diversity gradient, and quite limited genetic diversity of the improved germplasm. Mantel's test revealed a low correlation (r = 0.12) between phenotypic and molecular diversity, which increased (r = 0.45) when considering only the molecular diversity relative to significant SNPs from genome-wide association analyses. These analyses identified, inter alia, several areas of chromosome 6 involved in a largely pleiotropic control of vegetative or reproductive organ pigmentation. We found various significant SNPs for grain and straw yield under severe drought and onset of flowering, and one SNP on chromosome 5 for grain protein content. GP models displayed moderately high predictive ability (0.43 to 0.61) for protein content, grain and straw yield, and onset of flowering, and high predictive ability (0.76) for individual seed weight, based on intra-population, intra-environment cross-validations. The inter-population, inter-environment assessment of the models trained on the germplasm collection for breeding material of three recombinant inbred line (RIL) populations, which was challenged by much narrower diversity of the material, over eight-fold less available markers and quite different test environments, led to an overall loss of predictive ability of about 40% for seed weight, 50% for protein content and straw yield, and 60% for onset of flowering, and no prediction for grain yield. Within-RIL population predictive ability differed among populations.
    Keywords:  crop quality; drought tolerance; genetic structure; genomic selection; grain protein content; grain yield; molecular distinctness; trait genetic architecture
    DOI:  https://doi.org/10.3389/fpls.2023.1320506
  2. Plant Physiol. 2024 Jan 10. pii: kiae010. [Epub ahead of print]
      The essential role of plastid translation in embryogenesis has been established in many plants, but a retrograde signal triggered by defective plastid translation machinery that may leads to embryogenesis arrest remains unknown. In this study, we characterized an embryo defective27 (emb27) mutant in maize (Zea mays), and cloning indicates that Emb27 encodes the plastid ribosomal protein S13. The null mutant emb27-1 conditions an emb phenotype with arrested embryogenesis; however, the leaky mutant emb27-2 exhibits normal embryogenesis but an albino seedling-lethal phenotype. The emb27-1/emb27-2 trans-heterozygotes display varying phenotypes from emb to normal seeds but albino seedlings. Analysis of the Emb27 transcription levels in these mutants revealed that the Emb27 expression level in the embryo corresponds with the phenotypic expression of the emb27 mutants. In the W22 genetic background, an Emb27 transcription level higher than 6% of the wild-type level renders normal embryogenesis, whereas lower than that arrests embryogenesis. Mutation of Emb27 reduces the level of plastid 16S rRNA and the accumulation of the plastid-encoded proteins. As a secondary effect, splicing of several plastid introns was impaired in emb27-1 and two other plastid translation-defective mutants, emb15 and emb16, suggesting that plastome-encoded factors are required for the splicing of these introns, such as Maturase K (MatK). Our results indicate that EMB27 is essential for plastid protein translation, embryogenesis, and seedling development in maize and reveal an expression threshold of Emb27 for maize embryogenesis.
    Keywords:  Intron splicing; Maize embryogenesis; Plastid ribosomal protein S13; Plastid translation; Transcription threshold
    DOI:  https://doi.org/10.1093/plphys/kiae010
  3. Nature. 2024 Jan 10.
      The evolution of reproductive barriers is the first step in the formation of new species and can help us understand the diversification of life on Earth. These reproductive barriers often take the form of hybrid incompatibilities, in which alleles derived from two different species no longer interact properly in hybrids1-3. Theory predicts that hybrid incompatibilities may be more likely to arise at rapidly evolving genes4-6 and that incompatibilities involving multiple genes should be common7,8, but there has been sparse empirical data to evaluate these predictions. Here we describe a mitonuclear incompatibility involving three genes whose protein products are in physical contact within respiratory complex I of naturally hybridizing swordtail fish species. Individuals homozygous for mismatched protein combinations do not complete embryonic development or die as juveniles, whereas those heterozygous for the incompatibility have reduced complex I function and unbalanced representation of parental alleles in the mitochondrial proteome. We find that the effects of different genetic interactions on survival are non-additive, highlighting subtle complexity in the genetic architecture of hybrid incompatibilities. Finally, we document the evolutionary history of the genes involved, showing signals of accelerated evolution and evidence that an incompatibility has been transferred between species via hybridization.
    DOI:  https://doi.org/10.1038/s41586-023-06895-8
  4. Int J Mol Sci. 2024 Jan 01. pii: 566. [Epub ahead of print]25(1):
      Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
    Keywords:  downstream targets; flowering plants; male gametophyte development; regulatory roles; transcription factors; upstream regulators
    DOI:  https://doi.org/10.3390/ijms25010566