bims-polyam Biomed News
on Polyamines
Issue of 2020‒10‒11
three papers selected by
Alexander Ivanov
Engelhardt Institute of Molecular Biology


  1. Front Plant Sci. 2020 ;11 544933
      Polyamines (PAs) in plant play a critical role in growth and development and in response to environmental stress. Polyamine oxidase (PAO) is a flavin adenine dinucleotide dependent enzyme that plays a major role in PA catabolism. For the first time, PAO genes in tea plant were screened for the whole genome-wide and seven CsPAO genes were identified, which were named CsPAO1-7. Phylogenetic tree analysis revealed seven CsPAO protein sequences classed into three groups, including clade I, III, and IV. Compared with other plants, the tea plant lacked clade II members. Genetic structure and tissue specific expression analysis showed that there were significant differences among members of the CsPAO gene family. Among members of the CsPAOs family, CsPAO4 and CsPAO5 contain more introns and are highly expressed in various organizations. CsPAO1, CsPAO4, and CsPAO5 genes were cloned and expressed heterologously to verify theirs function. Heat map showed high response of CsPAO5 to drought stress, while CsPAO1 and CsPAO2 were sensitive to changes in nitrogen nutrition. Furthermore, exogenous abscisic acid (ABA) treatment indicated that the expression of most CsPAO genes in roots and leaves was significantly induced. In the root, Spm content increased significantly, while Put and Spd content decreased, suggesting that ABA has great influence on the biosynthesis of PAs. Anaerobic treatment of picked tea leaves showed that the decomposition of PAs was promoted to a certain extent. The above data help to clarify the role of CsPAO in response abiotic and nitrogen nutritional stresses in tea plants, and provide a reference perspective for the potential influence of PAs on the tea processing quality.
    Keywords:  Camellia sinensis; genomic characterization; polyamine oxidase; polyamines; stress response
    DOI:  https://doi.org/10.3389/fpls.2020.544933
  2. Cell Death Dis. 2020 Oct 09. 11(10): 839
      Polyamine biosynthesis is an essential metabolic pathway for cell growth and differentiation in non-small-cell lung cancer (NSCLC). Fragile-site associated tumour suppressor (FATS) is a novel gene involved in cancer. The results of our previous study showed that FATS-mediated polyubiquitination of p53 promotes the activation of p53 in response to DNA damage; however, little is known about the role of FATS in metabolic reprogramming in NSCLC. In the present study, FATS was observed to be significantly downregulated in NSCLC tissues compared with paired adjacent normal tissues and was associated with the survival of NSCLC patients. We further showed that the presence of the tumour suppressor FATS in NSCLC cells led to apoptosis by inducing pro-death autophagy. In addition, FATS was shown to function as a suppressor of polyamine biosynthesis by inhibiting ornithine decarboxylase (ODC) at the protein and mRNA levels, which was partially dependent on oestrogen receptor (ER). Furthermore, FATS was observed to bind to ERβ and translocate to the cytosol, leading to ODC degradation. The findings of our study demonstrate that FATS plays important roles in polyamine metabolism in NSCLC and provides a new perspective for NSCLC progression.
    DOI:  https://doi.org/10.1038/s41419-020-03052-1
  3. J Neural Transm (Vienna). 2020 Oct 07.
      In this study, we aimed to investigate the effects of agmatine, nitric oxide (NO), arginine, and glutamate, which are the metabolites in the polyamine pathway,  on the performance of executive functions (EF) in attention deficit hyperactivity disorder (ADHD). The ADHD group included 35 treatment-naive children (6-14 years old) who were ewly diagnosed with ADHD. The control group consisted of 35 healthy children with the same age and sex, having no previous psychiatric disorders. In the study groups, Stroop test (ST) and trail making test (TMT) were used to monitor EF, and blood samples were collected to measure agmatine with ultra-high-performance liquid chromatography and NO, glutamate, and arginine with enzyme-linked immunosorbent assay (ELISA). The EFs were significantly impaired in the ADHD group. The agmatine and arginine levels of the ADHD group were significantly higher than their peers. The NO and glutamate levels were also higher in the ADHD group compared to the control group, but these differences did not reach statistical significance. Children with ADHD had more difficulties during EF tasks compared to healthy children. The elevated NO and glutamate levels may be related with the impairment during EF tasks. Therefore, agmatine and arginine may increase to improve EF tasks through its inhibitory effect on the synthesis of NO and glutamate. Further studies are needed about polyamine pathway molecules to shed light on the pathophysiology of ADHD.
    Keywords:  Agmatine; Attention deficit hyperactivity disorder; Executive functions; Glutamate; Nitric oxide; Polyamine pathway
    DOI:  https://doi.org/10.1007/s00702-020-02261-4