bims-polyam Biomed News
on Polyamines
Issue of 2021‒08‒29
twelve papers selected by
Sebastian J. Hofer
University of Graz


  1. Foods. 2021 Jul 29. pii: 1752. [Epub ahead of print]10(8):
      Dietary polyamines are involved in different aspects of human health and play an important role in the prevention of certain chronic conditions such as cardiovascular diseases and diabetes. Different polyamines can be found in all foods in variable amounts. Moreover, several culinary practices have been reported to modify the content and profile of these bioactive compounds in food although experimental data are still scarce and even contradictory. Therefore, the aim of this study was to evaluate the occurrence of polyamines in a large range of foods and to assess the effect of different cooking processes on the polyamine content of a few of them. The highest level of polyamines was found in wheat germ (440.6 mg/kg). Among foods of a plant origin, high levels of total polyamines over 90 mg/kg were determined in mushrooms, green peppers, peas, citrus fruit, broad beans and tempeh with spermidine being predominant (ranging from 54 to 109 mg/kg). In foods of an animal origin, the highest levels of polyamines, above all putrescine (42-130 mg/kg), were found in raw milk, hard and blue cheeses and in dry-fermented sausages. Regarding the influence of different domestic cooking processes, polyamine levels in food were reduced by up to 64% by boiling and grilling but remained practically unmodified by microwave and sous-vide cooking.
    Keywords:  boiling; cooking processes; grilling; microwave; polyamines; putrescine; sous-vide; spermidine; spermine
    DOI:  https://doi.org/10.3390/foods10081752
  2. mBio. 2021 Aug 24. e0109121
      In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, "Candidatus Pelagibacter" strain HTCC7211 and "Candidatus Pelagibacter ubique" strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize. IMPORTANCE Genome streamlining in SAR11 bacterioplankton has resulted in a small repertoire of genes, yet paradoxically, they consume a substantial fraction of primary production in the oceans. Enzyme multifunctionality, referring to enzymes that are adapted to have broader substrate and catalytic range than canonically defined, is hypothesized to be an adaptation that increases the range of organic compounds metabolized by cells in environments where selection favors genome minimization. We provide experimental support for this hypothesis by demonstrating that SAR11 cells take up and metabolize multiple polyamine compounds and propose that a small set of multifunctional enzymes catalyze this metabolism. We report that polyamine uptake rates can exceed metabolic rates, resulting in both high intracellular concentrations of these nitrogen-rich compounds (in comparison to native polyamine levels) and an increase in cell size.
    Keywords:  SAR11; marine microbiology; metabolism; physiology; polyamines
    DOI:  https://doi.org/10.1128/mBio.01091-21
  3. Plant Physiol Biochem. 2021 Aug 18. pii: S0981-9428(21)00418-6. [Epub ahead of print]167 470-480
      The impact of salicylic acid (SA) on ethylene (ET) production and polyamine (PA) metabolism was investigated in wild type (WT) and ET receptor mutant Never ripe (Nr) tomato leaves under normal photoperiod and prolonged darkness. Nr displayed higher ET emanation compared to WT under control conditions and after SA treatments, but the ET signalling was blocked in these tissues. The accumulation of PAs was induced by 1 mM but not by 0.1 mM SA and was higher in WT than in Nr leaves. Upon 1 mM SA treatment, which caused hypersensitive response, illuminated leaves of WT showed high spermine (Spm) content in parallel with an increased expression of S-adenosylmethionine decarboxylase and Spm synthase (SlSPMS) suggesting that this process depended on the light. In Nr, however, Spm content and the expression of the SlSPMS gene were very low independently of the light conditions and SA treatments. This suggests that Spm synthesis needs functional ET perception. In WT leaves 1 mM SA enhanced putrescine (Put) synthesis by increasing the expression of Put biosynthesis genes, arginine and ornithine decarboxylases under darkness, while they were down-regulated in Nr. The activities of diamine (DAO) and polyamine oxidases (PAO), however, were generally higher in Nr compared to the WT after SA treatments. In Nr both SA applications increased the expression of SlPAO1 under normal photoperiod, while SlPAO2 was down-regulated in the dark suggesting a diverse role of PAOs in PA catabolism. These results indicated that ET could modulate the SA-induced PA metabolism in light-dependent manner.
    Keywords:  Ethylene; Illuminated and dark samples; Never ripe mutant; Polyamines; Salicylic acid; Tomato
    DOI:  https://doi.org/10.1016/j.plaphy.2021.08.009
  4. Biomolecules. 2021 Aug 11. pii: 1187. [Epub ahead of print]11(8):
      Polyamines (PAs) are polycationic biomolecules containing multiple amino groups. Patients with HIV-associated neurocognitive disorder (HAND) have high concentrations of the polyamine N-acetylated spermine in their brain and cerebral spinal fluid (CSF) and have increased PA release from astrocytes. These effects are due to the exposure to HIV-Tat. In healthy adult brain, PAs are accumulated but not synthesized in astrocytes, suggesting that PAs must enter astrocytes to be N-acetylated and released. Therefore, we tested if Cx43 hemichannels (Cx43-HCs) are pathways for PA flux in control and HIV-Tat-treated astrocytes. We used biotinylated spermine (b-SPM) to examine polyamine uptake. We found that control astrocytes and those treated with siRNA-Cx43 took up b-SPM, similarly suggesting that PA uptake is via a transporter/channel other than Cx43-HCs. Surprisingly, astrocytes pretreated with both HIV-Tat and siRNA-Cx43 showed increased accumulation of b-SPM. Using a novel polyamine transport inhibitor (PTI), trimer 44NMe, we blocked b-SPM uptake, showing that PA uptake is via a PTI-sensitive transport mechanism such as organic cation transporter. Our data suggest that Cx43 HCs are not a major pathway for b-SPM uptake in the condition of normal extracellular calcium concentration but may be involved in the release of PAs to the extracellular space during viral infection.
    Keywords:  Cx43 gap junctions and hemichannels; HIV-Tat; acetylated polyamines; astrocytes; astroglial polyamine transporter; diseases; polyamines; spermine catabolism
    DOI:  https://doi.org/10.3390/biom11081187
  5. J Invest Dermatol. 2021 Sep;pii: S0022-202X(21)00235-9. [Epub ahead of print]141(9): 2105-2107
      Polyamines have been implicated in skin tumorigenesis; however, their role in epidermal homeostasis remains obscure. In a new article in the Journal of Investigative Dermatology, Rahim et al. (2021) report that keratinocyte differentiation requires a shift in polyamine ratios that is mediated by AMD1. Results suggest that targeting polyamine availability might be useful in the treatment of hyperproliferative skin disorders.
    DOI:  https://doi.org/10.1016/j.jid.2021.02.011
  6. Int J Mol Sci. 2021 Aug 18. pii: 8883. [Epub ahead of print]22(16):
      Crohn's Disease (CD) and Rheumatoid Arthritis (RA) share some single nucleotide polymorphisms (SNPs) in protein tyrosine phosphatase non-receptor types 2 and 22 (PTPN2/22). Recently, we reported that clinical samples from CD and RA patients associated with PTPN2:rs478582 or PTPN22:rs2476601 genotypes were linked to overactive immune response and exacerbation of inflammation. Here, we investigated in vitro the effects of these SNPs in Jurkat T-cells using CRISPR-Cas9. All cells were evaluated for PTPN22/22 loss of function and effects on cell response. We measured gene expression via RT-qPCR and cytokines by ELISA. We also measured cell proliferation using a BrdU labeling proliferation ELISA, and T-cell activation using CD-25 fluorescent immunostaining. In PTPN2 SNP-edited cells, PTPN2 expression decreased by 3.2-fold, and proliferation increased by 10.2-fold compared to control. Likewise, expression of PTPN22 decreased by 2.4-fold and proliferation increased by 8.4-fold in PTPN22 SNP-edited cells. IFN-γ and TNF-α secretions increased in both edited cell lines. CD25 expression (cell activation) was 80.32% in PTPN2 SNP-edited cells and 85.82% in PTPN22 SNP-edited cells compared to 70.48% in unedited Jurkat T-cells. Treatment of PTPN2 and PTPN22-edited cells with a maximum 20 μM spermidine restored PTPN2/22 expression and cell response including cell proliferation, activation, and cytokines secretion. Most importantly, the effect of spermidine on edited cells restored normal expression and secretion of IFN-γ and TNF-α. The data clearly demonstrated that edited SNPs in PTPN2 or PTPN22 were associated with reduced gene expression, which resulted in an increase in cell proliferation and activation and overactive immune response. The data validated our earlier observations in CD and RA clinical samples. Surprisingly, spermidine restored PTPN2/22 expression in edited Jurkat T-cells and the consequent beneficial effect on cell response and inflammation. The study supports the use of polyamines dietary supplements for management of CD and in RA patients.
    Keywords:  Crohn’s Disease; PTPN2; PTPN22; Rheumatoid Arthritis; polyamines; spermidine
    DOI:  https://doi.org/10.3390/ijms22168883
  7. Cells. 2021 Aug 13. pii: 2076. [Epub ahead of print]10(8):
      Keratoconus (KC) is a common corneal ectatic disease that affects 1:500-1:2000 people worldwide and is associated with a progressive thinning of the corneal stroma that may lead to severe astigmatism and visual deficits. Riboflavin-mediated collagen crosslinking currently remains the only approved treatment to halt progressive corneal thinning associated with KC by improving the biomechanical properties of the stroma. Treatments designed to increase collagen deposition by resident corneal stromal keratocytes remain elusive. In this study, we evaluated the effects of arginine supplementation on steady-state levels of arginine and arginine-related metabolites (e.g., ornithine, proline, hydroxyproline, spermidine, and putrescine) and collagen protein expression by primary human corneal fibroblasts isolated from KC and non-KC (healthy) corneas and cultured in an established 3D in vitro model. We identified lower cytoplasmic arginine and spermidine levels in KC-derived constructs compared to healthy controls, which corresponded with overall higher gene expression of arginase. Arginine supplementation led to a robust increase in cytoplasmic arginine, ornithine, and spermidine levels in controls only and a significant increase in collagen type I secretion in KC-derived constructs. Further studies evaluating safety and efficacy of arginine supplementation are required to elucidate the potential therapeutic applications of modulating collagen deposition in the context of KC.
    Keywords:  arginine; collagen; cornea; extracellular matrix; hydroxyproline; keratoconus; metabolomics; tissue-engineered cornea
    DOI:  https://doi.org/10.3390/cells10082076
  8. Environ Microbiol. 2021 Aug 27.
      Nitric oxide (NO) is a signaling molecule in eukaryotic and prokaryotic organisms. NO levels transiently boost upon induction of conidiation in Aspergillus nidulans. Only one pathway for NO synthesis involving nitrate reductase has been reported in filamentous fungi so far, but this does not satisfy all the NO produced in fungal cells. Here we provide evidence for at least one additional biosynthetic pathway in A. nidulans involving L-arginine or an intermediate metabolite as a substrate. Under certain growth conditions, the addition of L-arginine to liquid media elicited a burst of nitric oxide that was not dependent on any of the urea cycle genes. The NO levels were controlled by the metabolically available arginine, which was regulated by mobilization from the vacuoles and during development. In vitro assays with protein extracts and amino acid profiling strongly suggested the existence of an arginine-dependent NO pathway analogous to the mammalian nitric oxide synthase. Addition of polyamines induced NO synthesis, and mutations in the polyamine synthesis genes puA and spdA reduced the production of NO. In conclusion, here we report an additional pathway for the synthesis of NO in A. nidulans using urea cycle intermediates. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1111/1462-2920.15733
  9. Biochemistry. 2021 Aug 27.
      G-Quadruplexes (GQs) are compact, stable structures in DNA and RNA comprised of two or more tiers of quartets whose G-rich motif of tracts of two or more G's occurs commonly within genomes and transcriptomes. While thermodynamically stable in vitro, these structures remain difficult to study in vivo. One approach to understanding GQ in vivo behavior is to test whether conditions and molecules found in cells facilitate their folding. Polyamines are biogenic polycations that interact with RNA. Among common polyamines, spermine contains the highest charge and is found in eukaryotes, making it a good candidate for association with high-charge density nucleic acid structures like GQs. Using a variety of techniques, including ultraviolet-detected thermal denaturation, circular dichroism, size exclusion chromatography, and confocal microscopy, on an array of quadruplex sequence variants, we find that eukaryotic biological concentrations of spermine induce microaggregation of three-tiered G-rich sequences, but not of purely two-tiered structures, although higher spermine concentrations induce aggregation of even these. The formation of microaggregates can also be induced by addition of as little as a single G to a two-tiered structure; moreover, they form at biological temperatures, are sensitive to salt, and can form in the presence of at least some flanking sequence. Notably, GQ aggregation is not observed under prokaryotic-like conditions of no spermine and higher NaCl concentrations. The sequence, polyamine, and salt specificity of microaggregation reported herein have implications for the formation and stability of G-rich nucleic acid aggregates in vivo and for functional roles for understudied GQ sequences with only two quadruplex tiers.
    DOI:  https://doi.org/10.1021/acs.biochem.1c00467
  10. Ecotoxicol Environ Saf. 2021 Aug 19. pii: S0147-6513(21)00790-9. [Epub ahead of print]224 112678
      PM2.5 exposure is considered harmful to central nerve system, while the specific biochemical mechanism underlying is still unrevealed. Neuronal apoptosis is believed the crucial event in pathogenesis of neurodegenerative diseases, but evidence supporting neuronal apoptosis as the mechanism for PM2.5 exposure induced neuronal injury is insufficient. S-adenosylmethionine decarboxylase 1 (AMD1) and its related spermidine synthesis have been shown to associate with cellular apoptosis, but its role in PM2.5 exposure induced neuronal apoptosis was rarely reported. The current study was aimed to better understand contribution of AMD1 activity and spermidine in PM2.5 exposure induced neuronal apoptosis. Sixteen C57BL/6 male mice were randomly divided and kept into ambient PM2.5 chamber or filtered air chamber for 6 months to establish the mouse model of whole-body ambient PM2.5 chronic exposure. In parallel, PC12 cells and primary hippocampal neurons were applied for various concentrations of PM2.5 treatment (0, 25, 50, 100, 200, and 400 μg/mL) to explore the possible cellular and molecular mechanism which may be critically involved in the process. Results showed that PM2.5 exposure triggered neuronal apoptosis with increased expression of Bax/Bcl-2 and cleaved caspase-3. PM2.5 exposure reduced AMD1 expression and spermidine synthesis. AMD1 inhibition could mimic PM2.5 exposure induced neuronal apoptosis. Spermidine supplementation rescued against neurotoxicity and inhibited PM2.5 induced apoptosis via impaired depolarization of mitochondrial membrane potential and reduced mitochondrial apoptosis related proteins. In summary, our work demonstrated that exposure to PM2.5 led to neuronal apoptosis, which may be the key event in the process of air pollution induced neurodegenerative diseases. AMD1 and spermidine associated with neuronal apoptosis induced by PM2.5 exposure, which was at least partially dependent on mitochondria mediated pathway.
    Keywords:  Mitochondria; Neuronal apoptosis; PM(2.5); S-adenosylmethionine decarboxylase 1; Spermidine
    DOI:  https://doi.org/10.1016/j.ecoenv.2021.112678
  11. Biomolecules. 2021 Jul 23. pii: 1086. [Epub ahead of print]11(8):
      There is a pressing need for molecular targets and biomarkers in gastric cancer (GC). We aimed at identifying aberrations in L-arginine metabolism with therapeutic and diagnostic potential. Systemic metabolites were quantified using mass spectrometry in 293 individuals and enzymes' gene expression was quantified in 29 paired tumor-normal samples using qPCR and referred to cancer pathology and molecular landscape. Patients with cancer or benign disorders had reduced systemic arginine, citrulline, and ornithine and elevated symmetric dimethylarginine and dimethylamine. Citrulline and ornithine depletion was accentuated in metastasizing cancers. Metabolite diagnostic panel had 91% accuracy in detecting cancer and 70% accuracy in differentiating cancer from benign disorders. Gastric tumors had upregulated NOS2 and downregulated ASL, PRMT2, ORNT1, and DDAH1 expression. NOS2 upregulation was less and ASL downregulation was more pronounced in metastatic cancers. Tumor ASL and PRMT2 expression was inversely related to local advancement. Enzyme up- or downregulation was greater or significant solely in cardia subtype. Metabolic reprogramming in GC includes aberrant L-arginine metabolism, reflecting GC subtype and pathology, and is manifested by altered interplay of its intermediates and enzymes. Exploiting L-arginine metabolic pathways for diagnostic and therapeutic purposes is warranted. Functional studies on ASL, PRMT2, and ORNT1 in GC are needed.
    Keywords:  arginine auxotrophy; argininosuccinate lyase; argininosuccinate synthase; dimethylarginine; dimethylarginine dimethylaminohydrolase; metabolic reprogramming; nitric oxide synthase; ornithine decarboxylase; ornithine translocase; protein arginine methyltransferase
    DOI:  https://doi.org/10.3390/biom11081086
  12. Molecules. 2021 Aug 08. pii: 4805. [Epub ahead of print]26(16):
      This paper reports the first metabolomics study of the impact of new chelates Pt2Spm and Pd2Spm (Spm = Spermine) on human osteosarcoma cellular metabolism, compared to the conventional platinum drugs cisplatin and oxaliplatin, in order to investigate the effects of different metal centers and ligands. Nuclear Magnetic Resonance metabolomics was used to identify meaningful metabolite variations in polar cell extracts collected during exposure to each of the four chelates. Cisplatin and oxaliplatin induced similar metabolic fingerprints of changing metabolite levels (affecting many amino acids, organic acids, nucleotides, choline compounds and other compounds), thus suggesting similar mechanisms of action. For these platinum drugs, a consistent uptake of amino acids is noted, along with an increase in nucleotides and derivatives, namely involved in glycosylation pathways. The Spm chelates elicit a markedly distinct metabolic signature, where inverse features are observed particularly for amino acids and nucleotides. Furthermore, Pd2Spm prompts a weaker response from osteosarcoma cells as compared to its platinum analogue, which is interesting as the palladium chelate exhibits higher cytotoxicity. Putative suggestions are discussed as to the affected cellular pathways and the origins of the distinct responses. This work demonstrates the value of untargeted metabolomics in measuring the response of cancer cells to either conventional or potential new drugs, seeking further understanding (or possible markers) of drug performance at the molecular level.
    Keywords:  NMR; endometabolome; human osteosarcoma cells; metabolomics; metal chelates; palladium; platinum; spermine
    DOI:  https://doi.org/10.3390/molecules26164805