Physiol Mol Biol Plants. 2022 Mar;28(3):
687-696
Flowers, leaves, fruits and buds of Tropaeolum majus are used for ornamental, medicinal and food purposes. However, salt stress limits the development and productivity of T. majus due to biochemical, physiological and anatomical disturbances. Polyamine application is an alternative for mitigating the harmful effects of salt stress. Thus, the objective of this work was to evaluate the effects of spermine application in T. majus grown under salt stress. The experiment was carried out in a completely randomized design, in a 3 × 2 factorial scheme, with 0, 40 mM (moderate salt stress) and 80 mM (severe salt stress) NaCl, and 0 and 1 mM spermine, and with five replicates. Growth (plant height, stem diameter, number of leaves, number of flowers, number of buds, leaf dry mass, stem dry mass and flower dry mass), gas exchange (gs, A, E, Ci and WUE), relative water content, contents of free amino acids, phenolic compounds, reducing and non-reducing sugars, lipid peroxidation and enzymatic activities (CAT, POD and APX) were evaluated. Spermine application decreased the harmful effects of salt stress on the growth and gas exchange and increased flowering in T. majus. Furthermore, the relative water content of T. majus increased under severe salt stress conditions. Spermine application reduced the contents of total phenolic compounds, free amino acids, reducing sugars and non-reducing sugars on leaves of T. majus. Spermine application increased CAT and POD activities in plants under severe salt stress and POD and APX in plants under moderate salt stress.
Keywords: Polyamine; Salinity; Tropaeolaceae; nasturtium