bims-proarb Biomed News
on Proteostasis in aging and regenerative biology
Issue of 2022–05–08
thirteen papers selected by
Rich Giadone, Harvard University



  1. Nat Commun. 2022 May 06. 13(1): 2501
      Protein synthesis is supported by cellular machineries that ensure polypeptides fold to their native conformation, whilst eliminating misfolded, aggregation prone species. Protein aggregation underlies pathologies including neurodegeneration. Aggregates' formation is antagonised by molecular chaperones, with cytoplasmic machinery resolving insoluble protein aggregates. However, it is unknown whether an analogous disaggregation system exists in the Endoplasmic Reticulum (ER) where ~30% of the proteome is synthesised. Here we show that the ER of a variety of mammalian cell types, including neurons, is endowed with the capability to resolve protein aggregates under stress. Utilising a purpose-developed protein aggregation probing system with a sub-organellar resolution, we observe steady-state aggregate accumulation in the ER. Pharmacological induction of ER stress does not augment aggregates, but rather stimulate their clearance within hours. We show that this dissagregation activity is catalysed by the stress-responsive ER molecular chaperone - BiP. This work reveals a hitherto unknow, non-redundant strand of the proteostasis-restorative ER stress response.
    DOI:  https://doi.org/10.1038/s41467-022-30238-2
  2. Trends Biochem Sci. 2022 Apr 28. pii: S0968-0004(22)00093-7. [Epub ahead of print]
      Yoo et al. have uncovered the minimal requirements of chaperone-mediated dispersal of Pab1 biomolecular condensates. These studies expand our understanding of the uniqueness of co-chaperones and add to our fundamental understanding of the heat shock response in cells.
    Keywords:  aggregation; biomolecular condensation; chaperones; heat shock; phase separation
    DOI:  https://doi.org/10.1016/j.tibs.2022.04.008
  3. Mol Neurobiol. 2022 Apr 30.
      Charcot-Marie-Tooth disease type 1A (CMT1A), caused by duplication of the peripheral myelin protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene, are the two most common forms of demyelinating CMT (CMT1), and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modelled by MpzR98C/ + mice that also show ER stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A, we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analysed by behavioural, neurophysiological, morphological and biochemical measures. Both MpzR98C/ + and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild-type values. Taken together, our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in amyotrophic lateral sclerosis and multiple sclerosis animal models, these data demonstrate its potential in managing UPR and ER stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases. (Left panel) the accumulation of overexpressed PMP22 or misfolded mutant P0 in the Schwann cell endoplasmic reticulum (ER) leads to overwhelming of the degradative capacity, activation of ER-stress mechanisms, and myelination impairment. (Right panel) by prolonging eIF2α phosphorylation, IFB-088 reduces the amount of newly synthesized proteins entering the ER, allowing the protein quality control systems to better cope with the unfolded/misfolded protein and allowing myelination to progress.
    Keywords:  Charcot-Marie-Tooth; IFB-088/Sephin1/icerguestat; Neuropathy; Proteostasis; UPR
    DOI:  https://doi.org/10.1007/s12035-022-02838-y
  4. Front Aging Neurosci. 2022 ;14 854380
      Insoluble protein deposits are hallmarks of neurodegenerative disorders and common forms of dementia. The aberrant aggregation of misfolded proteins involves a complex cascade of events that occur over time, from the cellular to the clinical phase of neurodegeneration. Declining neuronal health through increased cell stress and loss of protein homeostasis (proteostasis) functions correlate with the accumulation of aggregates. On the cellular level, increasing evidence supports that misfolded proteins may undergo liquid-liquid phase separation (LLPS), which is emerging as an important process to drive protein aggregation. Studying the reverse process of aggregate disassembly and degradation has only recently gained momentum, following reports of enzymes with distinct aggregate-disassembly activities. In this review, we will discuss how the ubiquitin-proteasome system and disaggregation machineries such as VCP/p97 and HSP70 system may disassemble and/or degrade protein aggregates. In addition to their canonically associated functions, these enzymes appear to share a common feature: reversibly assembling into liquid droplets in an LLPS-driven manner. We review the role of LLPS in enhancing the disassembly of aggregates through locally increasing the concentration of these enzymes and their co-proteins together within droplet structures. We propose that such activity may be achieved through the concerted actions of disaggregase machineries, the ubiquitin-proteasome system and their co-proteins, all of which are condensed within transient aggregate-associated droplets (TAADs), ultimately resulting in aggregate clearance. We further speculate that sustained engagement of these enzymatic activities within TAADs will be detrimental to normal cellular functions, where these activities are required. The possibility of facilitating endogenous disaggregation and degradation activities within TAADs potentially represents a novel target for therapeutic intervention to restore protein homeostasis at the early stages of neurodegeneration.
    Keywords:  disaggregase machinery; liquid droplet; liquid-liquid phase separation; neurodegenaration; protein aggregation; protein misfolding; ubiquitin proteasome pathway
    DOI:  https://doi.org/10.3389/fnagi.2022.854380
  5. Bioessays. 2022 May 06. e2100287
      Fibrillar protein aggregates are the pathological hallmark of a group of age-dependent neurodegenerative conditions, including Alzheimer's and Parkinson's disease. Aggregates of the microtubule-associated protein Tau are observed in Alzheimer's disease and primary tauopathies. Tau pathology propagates from cell to cell in a prion-like process that is likely subject to modulation by extracellular chaperones such as Clusterin. We recently reported that Clusterin delayed Tau fibril formation but enhanced the activity of Tau oligomers to seed aggregation of endogenous Tau in a cellular model. In contrast, Clusterin inhibited the propagation of α-Synuclein aggregates associated with Parkinson's disease. These findings raise the possibility of a mechanistic link between Clusterin upregulation observed in Alzheimer's disease and the progression of Tau pathology. Here we review the diverse functions of Clusterin in the pathogenesis of neurodegenerative diseases, focusing on evidence that Clusterin may act either as a suppressor or enhancer of pathology.
    Keywords:  Alzheimer's disease; Clusterin; extracellular chaperone; neurodegeneration; protein aggregation; tau; tauopathies
    DOI:  https://doi.org/10.1002/bies.202100287
  6. Life Sci. 2022 Apr 30. pii: S0024-3205(22)00295-8. [Epub ahead of print] 120595
      Autophagy is a highly evolutionarily conserved process in the eukaryotic cellular system by which dysfunctional organelles are selectively degraded through a series of processes of lysosomal activity and then returned to the cytoplasm for reuse. All cells require this process to maintain cellular homeostasis and promote cell survival during stress responses such as deprivation and hypoxia. Osteoblasts and osteoclasts are two cellular phenotypes in the bone that mediate bone homeostasis. However, an imbalance between osteoblastic bone formation and osteoclastic bone resorption contributes to the onset of bone diseases. A recent study suggests that autophagy, mitophagy, and selective mitochondrial autophagy may play an essential role in regulating osteoblast differentiation and osteoclast maturation. Autophagic activity dysregulation alters the equilibrium between osteoblastic bone creation and osteoclastic bone resorption, allowing bone disorders like osteoporosis to develop more easily. The current review emphasizes the role of autophagy and mitophagy and their related molecular mechanisms in bone metabolic disorders. In the current review, we emphasize the role of autophagy and mitophagy as well as their related molecular mechanism in bone metabolic disorders. Furthermore, we will discuss its potential as a new molecular target for the treating of metabolic bone disease and future application in therapeutic translational research.
    Keywords:  Autophagy; Epigenetics; Mitophagy; Osteoporosis; miRNA regulation
    DOI:  https://doi.org/10.1016/j.lfs.2022.120595
  7. Trends Cell Biol. 2022 Apr 27. pii: S0962-8924(22)00089-7. [Epub ahead of print]
      Pluripotent stem cells (PSCs) can self-renew indefinitely in culture while retaining the potential to differentiate into virtually all normal cell types in the adult animal. Due to these remarkable properties, PSCs not only provide a superb system to investigate mammalian development and model diseases, but also hold promise for regenerative therapies. Autophagy is a self-digestive process that targets proteins, organelles, and other cellular contents for lysosomal degradation. Here, we review recent literature on the mechanistic role of different types of autophagy in embryonic development, embryonic stem cells (ESCs), and induced PSCs (iPSCs), focusing on their remodeling functions on protein, metabolism, and epigenetics. We present a perspective on unsolved issues and propose that autophagy is a promising target to modulate acquisition, maintenance, and directed differentiation of PSCs.
    Keywords:  autophagy; chaperone-mediated autophagy; differentiation; embryonic stem cells; induced pluripotent stem cells; macroautophagy; microautophagy; self-renewal
    DOI:  https://doi.org/10.1016/j.tcb.2022.04.001
  8. Methods Mol Biol. 2022 ;2429 73-84
      Protein aggregation is one of the hallmarks of many neurodegenerative diseases. While protein aggregation is a heavily studied aspect of neurodegenerative disease, methods of detection vary from one model system to another. Induced pluripotent stem cells (iPSCs) present an opportunity to model disease using patient-specific cells. However, iPSC-derived neurons are fetal-like in maturity, making it a challenge to detect key features such as protein aggregation that are often exacerbated with age. Nevertheless, we have previously found abnormal soluble and insoluble protein burden in motor neurons generated from amyotrophic lateral sclerosis (ALS) iPSCs, though protein aggregation has not been readily detected in iPSC-derived neurons from other neurodegenerative diseases. Therefore, here we present an ultracentrifugation method that detects insoluble protein species in various models of neurodegenerative disease, including Huntington's disease, Alzheimer's disease, and ALS. This method is able to detect soluble, insoluble, and SDS-resistant species in iPSC-derived neurons and is designed to be flexible for optimal detection of various aggregation-prone proteins.
    Keywords:  Alzheimer’s Disease; Amyotrophic Lateral Sclerosis; Huntington’s Disease; Induced Pluripotent Stem Cells; Neurodegeneration; Neurons; Protein Aggregation
    DOI:  https://doi.org/10.1007/978-1-0716-1979-7_6
  9. Aging (Albany NY). 2022 May 04. 14(undefined):
      Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals. At variance with other species, NMR exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes. Remarkably, the number of stem cells was constant throughout aging. We found three classical cellular states defining a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. Epidermal gene expression did not change with aging either. Langerhans cell clusters were conserved, and only a higher basal stem cell expression of Igfbp3 was found in aged animals. In accordance, NMR skin healing closure was similar in young and older animals. Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.
    Keywords:  aging; naked mole-rat; skin; stem cells; wound healing
    DOI:  https://doi.org/10.18632/aging.204054
  10. Nucleic Acids Res. 2022 May 02. pii: gkac257. [Epub ahead of print]
      The -1 programmed ribosomal frameshifting (-1 PRF) has been explored as a gene regulatory circuit for synthetic biology applications. The -1 PRF usually uses an RNA pseudoknot structure as the frameshifting stimulator. Finding a ligand-responsive pseudoknot with efficient -1 PRF activity is time consuming and is becoming a bottleneck for its development. Inserting a guanine to guanine (GG)-mismatch pair in the 5'-stem of a small frameshifting pseudoknot could attenuate -1 PRF activity by reducing stem stability. Thus, a ligand-responsive frameshifting pseudoknot can be built using GG-mismatch-targeting small molecules to restore stem stability. Here, a pseudoknot requiring stem-loop tertiary interactions for potent frameshifting activity was used as the engineering template. This considerably amplified the effect of mismatch destabilization, and led to creation of a mammalian -1 PRF riboswitch module capable of mediating premature translation termination as a synthetic regulatory mode. Application of the synthetic circuit allowed ligand-dependent ATF6N mimic formation for the activation of protein folding-related genes involved in the unfolded protein response without an ER-stress inducing agent. With the availability of mismatch-targeting molecules, the tailored module thus paves the way for various mismatch plug-ins to streamline highly efficient orthogonal ligand-dependent -1 PRF stimulator development in the synthetic biology toolbox.
    DOI:  https://doi.org/10.1093/nar/gkac257
  11. Cell Rep. 2022 05 03. pii: S2211-1247(22)00517-4. [Epub ahead of print]39(5): 110753
      Amyloids are fibrous protein aggregates associated with age-related diseases. While these aggregates are typically described as irreversible and pathogenic, some cells use reversible amyloid-like structures that serve important functions. The RNA-binding protein Rim4 forms amyloid-like assemblies that are essential for translational control during Saccharomyces cerevisiae meiosis. Rim4 amyloid-like assemblies are disassembled in a phosphorylation-dependent manner at meiosis II onset. By investigating Rim4 clearance, we elucidate co-factors that mediate clearance of amyloid-like assemblies in a physiological setting. We demonstrate that yeast 14-3-3 proteins bind to Rim4 assemblies and facilitate their subsequent phosphorylation and timely clearance. Furthermore, distinct 14-3-3 proteins play non-redundant roles in facilitating phosphorylation and clearance of amyloid-like Rim4. Additionally, we find that 14-3-3 proteins contribute to global protein aggregate homeostasis. Based on the role of 14-3-3 proteins in aggregate homeostasis and their interactions with disease-associated assemblies, we propose that these proteins may protect against pathological protein aggregates.
    Keywords:  14-3-3 proteins; CP: cell biology; CP: molecular biology; RNA-binding proteins; amyloid; chaperones; gametogenesis; meiosis; protein aggregates; protein homeostasis
    DOI:  https://doi.org/10.1016/j.celrep.2022.110753
  12. Front Neurosci. 2022 ;16 818655
      Loss of TDP-43 protein homeostasis and dysfunction, in particular TDP-43 aggregation, are tied to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is an RNA binding protein tightly controlling its own expression levels through a negative feedback loop, involving TDP-43 recruitment to the 3' untranslated region of its own transcript. Aberrant TDP-43 expression caused by autoregulation defects are linked to TDP-43 pathology. Therefore, interactions between TDP-43 and its own transcript are crucial to prevent TDP-43 aggregation and loss of function. However, the mechanisms that mediate this interaction remain ill-defined. We find that a central RNA sequence in the 3' UTR, which mediates TDP-43 autoregulation, increases the liquid properties of TDP-43 phase separation. Furthermore, binding to this RNA sequence induces TDP-43 condensation in human cell lysates, suggesting that this interaction promotes TDP-43 self-assembly into dynamic ribonucleoprotein granules. In agreement with these findings, our experiments show that TDP-43 oligomerization and phase separation, mediated by the amino and carboxy-terminal domains, respectively, are essential for TDP-43 autoregulation. According to our additional observations, CLIP34-associated phase separation and autoregulation may be efficiently controlled by phosphorylation of the N-terminal domain. Importantly, we find that specific ALS-associated TDP-43 mutations, mainly M337V, and a shortened TDP-43 isoform recently tied to motor neuron toxicity in ALS, disrupt the liquid properties of TDP-43-RNA condensates as well as autoregulatory function. In addition, we find that M337V decreases the cellular clearance of TDP-43 and other RNA binding proteins associated with ALS/FTD. These observations suggest that loss of liquid properties in M337V condensates strongly affects protein homeostasis. Together, this work provides evidence for the central role of TDP-43 oligomerization and liquid-liquid phase separation linked to RNA binding in autoregulation. These mechanisms may be impaired by TDP-43 disease variants and controlled by specific cellular signaling.
    Keywords:  ALS; ALS mutations; RNA binding protein; TDP-43 (TAR DNA-binding protein 43); TDP-43 autoregulation; frontotemporal dementia (FTD); liquid-liquid phase separation (LLPS); protein aggregation
    DOI:  https://doi.org/10.3389/fnins.2022.818655
  13. Free Neuropathol. 2022 Jan 11. pii: 9. [Epub ahead of print]3(9):
       Background: Seeding of pathology related to Alzheimer's disease (AD) and Lewy body disease (LBD) by tissue homogenates or purified protein aggregates in various model systems has revealed prion-like properties of these disorders. Typically, these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could direct the evolution of amyloid-β (Aβ) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in susceptible mouse models.
    Methods: Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aβ pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice.
    Results: We observed that lysates from the brains with AD (Aβ+, tau+), AD/LBD (Aβ+, tau+, αSyn+), or Pathological Aging (Aβ+, tau-, αSyn-) efficiently seeded diffuse Aβ deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aβ deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level.
    Conclusions: These findings are consistent with the idea that diffuse Aβ pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aβ that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.
    Keywords:  Alzheimer’s disease; Amyloid-β; Lewy body dementia; Seeding; Tau; α-Synuclein
    DOI:  https://doi.org/10.17879/freeneuropathology-2022-3766