bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2023‒07‒23
nine papers selected by
Verena Kohler



  1. Cell Death Discov. 2023 Jul 15. 9(1): 248
      Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise a cytoplasmic and a nuclear arm that are interconnected and share key players. It is thus conceivable that impairment of the nuclear arm of the PQC may have a negative impact on the cytoplasmic arm of the PQC, contributing to the formation of the cytoplasmic pathological inclusions. Here we focused on two stress-inducible condensates that act as transient deposition sites for misfolding-prone proteins: Promyelocytic leukemia protein (PML) nuclear bodies (PML-NBs) and cytoplasmic stress granules (SGs). Upon stress, PML-NBs compartmentalize misfolded proteins, including defective ribosomal products (DRiPs), and recruit chaperones and proteasomes to promote their nuclear clearance. SGs transiently sequester aggregation-prone RNA-binding proteins linked to ALS-FTD and mRNAs to attenuate their translation. We report that PML assembly is impaired in the human brain and spinal cord of familial C9orf72 and FUS ALS-FTD cases. We also show that defective PML-NB assembly impairs the compartmentalization of DRiPs in the nucleus, leading to their accumulation inside cytoplasmic SGs, negatively influencing SG dynamics. Although it is currently unclear what causes the decrease of PML-NBs in ALS-FTD, our data highlight the existence of a cross-talk between the cytoplasmic and nuclear PQC systems, whose alteration can contribute to SG accumulation and cytoplasmic protein aggregation in ALS-FTD.
    DOI:  https://doi.org/10.1038/s41420-023-01547-2
  2. Med Chem. 2023 Jul 18.
      Dementia with Lewy Bodies is a neurodegenerative disorder characterised by abnormal α-Synuclein aggregate accumulation in Lewy Bodies and Lewy Neurites and the most common form of dementia after Alzheimer's disease. The presynaptic protein alpha-synuclein (α-Syn) regulates synaptic vesicle trafficking and the subsequent release of neurotransmitters in the brain. These aggregates go through a number of crucial stages, such as aggregation, oligomerization, and fibrillation. Treatment of this disorder is generally symptomatic. This necessitates the development of cutting-edge therapeutic approaches that can either stop or change the course of the diseases. Many studies have shown that α-synuclein is a significant therapeutic target and that inhibiting α-synuclein aggregation, oligomerization, and fibrillation is an important disease-modifying strategy. Since α-syn is a defining feature of Parkinson's disease, the current review provides an overview of plant phytochemicals and synthetic heterocyclic compounds that target α-syn in Parkinson's disease in order to develop new drugs for Dementia with Lewy Bodies.
    Keywords:  Dementia with Lewy body; Parkinson's disease; Presynaptic protein; αalpha;-Synuclein; αalpha;-Synuclein aggregation inhibitors.
    DOI:  https://doi.org/10.2174/1573406419666230718121644
  3. Mol Neurobiol. 2023 Jul 21.
      Misfolding and aggregation of α-Synuclein (α-Syn), which are hallmark pathological features of neurodegenerative diseases such as Parkinson's disease (PD) and dementia with Lewy Bodies, continue to be significant areas of research. Among the diverse forms of α-Syn - monomer, oligomer, and fibril, the oligomer is considered the most toxic. However, the mechanisms governing α-Syn oligomerization are not yet fully understood. In this study, we utilized genome-wide CRISPR/Cas9 loss-of-function screening in human HEK293 cells to identify negative regulators of α-Syn oligomerization. We found that tetraspanin 3 (TSPAN3), a presumptive four-pass transmembrane protein, but not its homolog TSPAN7, significantly modulates α-Syn oligomer levels. TSPAN3 was observed to interact with α-Syn oligomers, regulate the amount of α-Syn oligomers on the cell membrane, and promote their degradation via the clathrin-AP2 mediated endo-lysosome pathway. Our findings highlight TSPAN3 as a potential regulator of α-Syn oligomers, presenting a promising target for future PD prevention and treatment strategies.
    Keywords:  CRISPR-Cas9; Degradation; Lysosome; TSPAN3; α-Synuclein
    DOI:  https://doi.org/10.1007/s12035-023-03495-5
  4. Appl Biochem Biotechnol. 2023 Jul 19.
      Aggregated α-synuclein (α-syn) present inside small cytoplasmic inclusions in the substantia nigra region marks the major pathological hallmark of Parkinson's disease (PD) and makes it an attractive target for the drug development process. Certain small-molecule chaperones (such as DCA, UDCA, TUDCA) presented the ability to prevent misfolding and aggregation of α-syn as well as to disentangle mature α-syn amyloid fibrils. However, due to toxicity constraints, these small molecules could not be translated into clinical settings. Computational biology methods and bioinformatics approaches allow virtual screening of a large number of molecules, with reduced side effects and better efficacy. In the present study, a library of 10,928 derivatives was generated using DCA, UDCA, and TUDCA bile acid scaffolds and analysed for their binding affinity, pharmacokinetic properties, and drug likeliness profile, to come up with promising compounds with reduced toxicity and better chaperone ability. Molecular docking revealed that with respect to their free binding energy, C1-C25 have the lowest binding energy and bind significantly to recombinantly assembled E46K α-syn fibrils (PDB ID-6UFR). In silico ADME predictions revealed that all these compounds had minimal toxic effects and had good absorption as well as solubility characteristics. Simulation studies further showed that the imidazole ring-based TUDCA derivatives interacted better with the protein in comparison to the others. The proposed study has identified potent chemical chaperones (C2 and C3) as effective therapeutic agents for Parkinson's disease, and further in vitro and in vivo testing will be undertaken to substantiate their potential as novel drugs.
    Keywords:  Bile acids; Chemical chaperones; E46K-mutated α-syn protein; In silico studies; Parkinson’s disease
    DOI:  https://doi.org/10.1007/s12010-023-04625-4
  5. J Agric Food Chem. 2023 Jul 19.
      Espresso coffee is among the most consumed beverages in the world. Recent studies report a protective activity of the coffee beverage against neurodegenerative disorders such as Alzheimer's disease. Alzheimer's disease belongs to a group of disorders, called tauopathies, which are characterized by the intraneuronal accumulation of the microtubule-associated protein tau in fibrillar aggregates. In this work, we characterized by NMR the molecular composition of the espresso coffee extract and identified its main components. We then demonstrated with in vitro and in cell experiments that the whole coffee extract, caffeine, and genistein have biological properties in preventing aggregation, condensation, and seeding activity of the repeat region of tau. We also identified a set of coffee compounds capable of binding to preformed tau fibrils. These results add insights into the neuroprotective potential of espresso coffee and suggest candidate molecular scaffolds for designing therapies targeting monomeric or fibrillized forms of tau.
    Keywords:  Alzheimer′s disease; NMR; bioactive molecules; coffee; liquid−liquid phase separation; protein aggregation; tau protein
    DOI:  https://doi.org/10.1021/acs.jafc.3c01072
  6. bioRxiv. 2023 Jul 03. pii: 2023.07.03.547547. [Epub ahead of print]
      Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). Here, we identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility in the aging brain. βHB is a small molecule metabolite which primarily provides an oxidative substrate for ATP during hypoglycemic conditions, and also regulates other cellular processes through covalent and noncovalent protein interactions. We demonstrate βHB-induced protein insolubility across in vitro , ex vivo , and in vivo mouse systems. This activity is shared by select structurally similar metabolites, is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. Furthermore, this phenotype is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We have generated a comprehensive atlas of the βHB-induced protein insolublome ex vivo and in vivo using mass spectrometry proteomics, and have identified common protein domains within βHB target sequences. Finally, we show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain, likely via βHB-induced autophagy. Overall, these data indicate a new metabolically regulated mechanism of proteostasis relevant to aging and AD.
    DOI:  https://doi.org/10.1101/2023.07.03.547547
  7. Redox Biol. 2023 Jul 13. pii: S2213-2317(23)00218-5. [Epub ahead of print]65 102817
      Proteostasis reinforcement is a promising approach in the design of therapeutic interventions against proteinopathies, including Alzheimer's disease. Understanding how and which parts of the proteostasis network should be enhanced is crucial in developing efficient therapeutic strategies. The ability of specific tissues to induce proteostatic responses in distal ones (cell non-autonomous regulation of proteostasis) is attracting interest. Although the proteasome is a major protein degradation node, nothing is known on its cell non-autonomous regulation. We show that proteasome activation in the nervous system can enhance the proteasome activity in the muscle of Caenorhabditis elegans. Mechanistically, this communication depends on Small Clear Vesicles, with glutamate as one of the neurotransmitters required for the distal regulation. More importantly, we demonstrate that this cell non-autonomous proteasome activation is translated into efficient prevention of amyloid-beta (Αβ)-mediated proteotoxic effects in the muscle of C. elegans but notably not to resistance against oxidative stress. Our in vivo data establish a mechanistic link between neuronal proteasome reinforcement and decreased Aβ proteotoxicity in the muscle. The identified distal communication may have serious implications in the design of therapeutic strategies based on tissue-specific proteasome manipulation.
    Keywords:  C. elegans; Cell non-autonomous regulation; Proteasome; Proteinopathies; Proteostasis
    DOI:  https://doi.org/10.1016/j.redox.2023.102817
  8. ACS Chem Neurosci. 2023 Jul 20.
      As the population ages, an epidemic of neurodegenerative diseases with devastating social consequences is looming. To address the pathologies leading to amyloid-related dementia, novel therapeutic strategies must be developed for the treatment or prevention of neural protein-folding disorders. Nanotechnology will be crucial to this scenario, especially in the design of nanoscale systems carrying therapeutic compounds that can navigate the nervous system and identify amyloid to treat it in situ. In this line, we have recently designed a highly simplified and versatile nanorobot consisting of a protein coating based on the heat shock protein 90 (Hsp90) chaperone that not only propels nanoparticles using ATP but also endows them with the extraordinary ability to fold and restore the activity of heat-denatured proteins. Here, we assess the effectiveness of these nanosystems in inhibiting/reducing the aggregation of amyloidogenic proteins. Using Raman spectroscopy, we qualitatively and quantitatively analyze amyloid by identifying and semi-quantifying the Amide I band. Our findings indicate that the coupling of Hsp90 to nanoparticles results in a more potent inhibition of amyloid formation when compared to the soluble protein. We propose that this enhanced performance may be attributed to enhanced release-capture cycles of amyloid precursor oligomers by Hsp90 molecules nearby on the nanosurface. Intelligent biocompatible coatings, like the one described here, that enhance the diffusivity and self-propulsion of nanoparticles while enabling them to carry out critical functions such as environmental scanning, identification, and amyloid prevention, present an exceptional opportunity for the development of advanced nanodevices in biomedical applications. This approach, which combined active biomolecules with synthetic materials, is poised to reveal remarkable prospects in the field of nanomedicine and biotechnology.
    Keywords:  amyloid; microrobot; molecular chaperone; nanorobot; neurodegeneration; protein renaturation
    DOI:  https://doi.org/10.1021/acschemneuro.3c00370
  9. Inflammopharmacology. 2023 Jul 17.
      Dysregulation of protein homeostasis, proteostasis, is a distinctive hallmark of many neurodegenerative disorders and aging. Deleteriously, the accumulation of aberrant proteins in Alzheimer's disease (AD) is accompanied with a marked collapse in proteostasis network. The current study explored the potential therapeutic effect of vardenafil (VAR), a phosphodiesterase-5 inhibitor, in AlCl3/D-galactose (D-gal)-induced AD in rats and its possible underlying mechanisms. The impact of VAR treatment on neurobehavioral function, hippocampal tissue architecture, and the activity of the cholinergic system main enzymes were assessed utilizing VAR at doses of 0.3 mg/kg and 1 mg/kg. Additionally, the expression level of amyloid-beta and phosphorylated tau proteins in the hippocampus were figured out. Accordingly, VAR higher dose was selected to contemplate the possible underlying mechanisms. Intriguingly, VAR elevated the cyclic guanosine monophosphate level in the hippocampus and averted the repressed proteasome activity by AlCl3/D-gal; hence, VAR might alleviate the burden of toxic protein aggregates in AD. In addition, a substantial reduction in the activating transcription factor 6-mediated endoplasmic reticulum stress was demonstrated with VAR treatment. Notably, VAR counteracted the AlCl3/D-gal-induced depletion of nuclear factor erythroid 2-related factor 2 level. Moreover, the anti-senescence activity of VAR was demonstrated via its ability to restore the balance of the redox circuit. The modulation of phosphatidylinositol-3-kinase/protein kinase B/p53 pathway and the reduction of nuclear factor kappa B level, the key regulator of senescence-associated secretory phenotype mediators release, with VAR treatment were also elucidated. Altogether, these findings insinuate the possible therapeutic benefits of VAR in AD management.
    Keywords:  Alzheimer’s; Endoplasmic reticulum stress; PI3K/Akt/p53; Proteasome activation; Senescence; Vardenafil
    DOI:  https://doi.org/10.1007/s10787-023-01287-w