bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2024‒02‒04
nine papers selected by
Verena Kohler, Umeå University



  1. ACS Cent Sci. 2024 Jan 24. 10(1): 87-103
      Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure, and current treatment options are very limited. Previously, we performed a high-throughput screen to identify small molecules that inhibit protein aggregation caused by a mutation in the gene that encodes superoxide dismutase 1 (SOD1), which is responsible for about 25% of familial ALS. This resulted in three hit series of compounds that were optimized over several years to give three compounds that were highly active in a mutant SOD1 ALS model. Here we identify the target of two of the active compounds (6 and 7) with the use of photoaffinity labeling, chemical biology reporters, affinity purification, proteomic analysis, and fluorescent/cellular thermal shift assays. Evidence is provided to demonstrate that these two pyrazolone compounds directly interact with 14-3-3-E and 14-3-3-Q isoforms, which have chaperone activity and are known to interact with mutant SOD1G93A aggregates and become insoluble in the subcellular JUNQ compartment, leading to apoptosis. Because protein aggregation is the hallmark of all neurodegenerative diseases, knowledge of the target compounds that inhibit protein aggregation allows for the design of more effective molecules for the treatment of ALS and possibly other neurodegenerative diseases.
    DOI:  https://doi.org/10.1021/acscentsci.3c00213
  2. Exp Gerontol. 2024 Jan 25. pii: S0531-5565(24)00008-1. [Epub ahead of print] 112366
      synucleinopathies are diseases characterized by the aggregation of α-synuclein (α-syn), which forms fibrils through misfolding and accumulates in a prion-like manner. To detect the presence of these α-syn aggregates in clinical samples, seed amplification assays (SAAs) have been developed. These SAAs are capable of amplifying the α-syn seeds, allowing for their detection. αSyn-SAAs have been reported under the names 'protein misfolding cyclic amplification' (αSyn-PMCA) and 'real-time quaking-induced conversion'α-Syn-RT-QuIC. The α-Syn RT-QuIC, in particular, has been adapted to amplify and detect α-syn aggregates in various biospecimens, including cerebrospinal fluid (CSF), skin, nasal brushing, serum and saliva. The α-syn RT-QuIC assay has demonstrated good sensitivity and specificity in detecting pathological α-syn, particularly in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) cases, with an accuracy rate of up to 80 %. Additionally, differential diagnosis between DLB and PD, as well as PD and multiple system atrophy (MSA), can be achieved by utilizing certain kinetic thioflavin T (ThT) parameters and other parameters. Moreover, the positive detection of α-syn in the prodromal stage of synucleinopathies provides an opportunity for early intervention and management. In summary, the development of the α-syn RT-QuIC assay has greatly contributed to the field of synucleinopathies. Therefore, we review the development of α-syn RT-QuIC assay and describe in detail the recent advancements of α-syn RT-QuIC assay for detecting pathological α-syn in synucleinopathies.
    Keywords:  Aggregated α-synuclein; Seed amplification assays; Self-propagation; Synucleinopathies; α-Syn RT-QuIC
    DOI:  https://doi.org/10.1016/j.exger.2024.112366
  3. Neurosci Lett. 2024 Jan 26. pii: S0304-3940(24)00031-4. [Epub ahead of print]823 137654
      The α7 neuronal nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the development of Parkinson's disease (PD) therapeutics. α-Synuclein (α-Syn), a principal component of Lewy bodies (cytoplasmic inclusions), is a major contributor to PD pathophysiology. Previous studies have demonstrated that activating α7 nAChR protects against nigrostriatal dopamine degeneration in acute and chronic PD animal models induced by 6-hydroxydopamine and rotenone, respectively. In the present study, we investigated the effects of PNU282987, a selective α7 nAChR agonist, against α-Syn-induced neurotoxicity in α-SynWT-, α-SynA30P-, and α-SynE46K-N2a cells. PNU282987 exhibited substantial neuroprotection against both wild-type and mutant-type α-Syn-induced toxicity. Furthermore, PNU282987 promoted transcription factor EB activity and reduced intracellular α-Syn protein levels through autophagy induction. These results highlight the therapeutic potential of α7 nAChR activation in diseases characterized by α-Syn aggregation, such as PD.
    Keywords:  Autophagy; Neuroprotection; α7 nicotinic acetylcholine receptor
    DOI:  https://doi.org/10.1016/j.neulet.2024.137654
  4. FEBS J. 2024 Jan 31.
      α-Synuclein is a member of the synuclein family well known for its involvement in Parkinson's disease and other synucleinopathies. Most studies investigate the mechanism of its involvement in pathology within the cell cytoplasm and extracellular space. However, despite a continuing interest in α-synuclein, two questions about this protein remain poorly understood. What is the normal physiological function of α-synuclein, and what does it do in the cell nucleus? A recent article by Takaaki Nakamura and colleagues contains at least a partial answer to both questions. The authors identified previously unknown α-synuclein-interacting proteins in the nucleus and showed that the protein complex containing α-synuclein modulates transcriptional profiles controlling the process of epigenetic alterations and neural differentiation.
    Keywords:  arginine methyltransferase 5; epigenomic regulation; histones; transcriptomic analysis; α-synuclein
    DOI:  https://doi.org/10.1111/febs.17072
  5. Methods Cell Biol. 2024 ;pii: S0091-679X(22)00144-3. [Epub ahead of print]181 1-15
      Proteome integrity is a prerequisite for cellular functionality and organismal viability. Its compromise is considered an inherent part of the aging process and has been associated with the onset of age-related, neurodegenerative pathologies. Although the molecular underpinnings of protein homeostasis (proteostasis) have been extensively studied, several aspects of its regulation remain elusive. The nematode Caenorhabditis elegans has emerged as a versatile, heterologous model organism to study the dynamics of aggregation-prone human proteins in vivo. Here, we describe an experimental pipeline for the analysis of polyglutamine (polyQ) tract aggregation, as a measure of the state of proteostasis, during aging.
    Keywords:  Aging; Caenorhabditis elegans; Polyglutamine diseases; Protein aggregation; Proteostasis
    DOI:  https://doi.org/10.1016/bs.mcb.2022.09.003
  6. bioRxiv. 2024 Jan 20. pii: 2024.01.20.576435. [Epub ahead of print]
      Neuronal aging and neurodegenerative diseases are accompanied by proteostasis collapse, while cellular factors that trigger it are not identified. Impaired mitochondrial transport in the axon is another feature of aging and neurodegenerative diseases. Using Drosophila , we found that genetic depletion of axonal mitochondria causes dysregulation of translation and protein degradation. Axons with mitochondrial depletion showed abnormal protein accumulation, and autophagic defects. Lowering neuronal ATP levels by blocking glycolysis did not reduce autophagy, suggesting that autophagic defects are associated with mitochondrial distribution. We found eIF2β was upregulated by depletion of axonal mitochondria via proteome analysis. Phosphorylation of eIF2α, another subunit of eIF2, was lowered, and global translation was suppressed. Neuronal overexpression of eIF2β phenocopied the autophagic defects and neuronal dysfunctions, and lowering eIF2β expression rescued those perturbations caused by depletion of axonal mitochondria. These results indicate the mitochondria-eIF2β axis maintains proteostasis in the axon, of which disruption may underly the onset and progression of age-related neurodegenerative diseases.Highlights: Loss of axonal mitochondria impairs autophagy and accumulates proteins in the axonLoss of axonal mitochondria upregulates eIF2β and downregulates p-eIF2αNeuronal upregulation of eIF2β induces autophagic defects and locomotor dysfunctionLowering eIF2β rescues autophagic defects caused by loss of axonal mitochondria.
    DOI:  https://doi.org/10.1101/2024.01.20.576435
  7. J Mol Biol. 2024 Jan 30. pii: S0022-2836(24)00027-5. [Epub ahead of print] 168461
      Early phase of amyloid formation, where prefibrillar aggregates such as oligomers and protofibrils are often observed, is crucial for understanding pathogenesis. However, the detailed mechanisms of their formation have been difficult to elucidate because they tend to form transiently and heterogeneously. Here, we found that bovine insulin protofibril formation proceeds in a monodisperse manner, which allowed us to characterize the detailed early aggregation process by light scattering in combination with thioflavin T (ThT) fluorescence and Fourier transform infrared (FTIR) spectroscopy. The protofibril formation was specific to bovine insulin, whereas no significant aggregation was observed in human insulin. The kinetic analysis combining static and dynamic light scattering data revealed that the protofibril formation process in bovine insulin can be divided into two steps based on fractal dimension. When modeling the experimental data based on Smoluchowski aggregation kinetics, an aggregation scheme consisting of initial fractal aggregation forming spherical oligomers and their subsequent end-to-end association forming protofibrils was clarified. Furthermore, the analysis of temperature and salt concentration dependencies showed that the end-to-end association is the rate-limiting step, involving dehydration. The established model for protofibril formation, wherein oligomers are incorporated as a precursor provides insight into the molecular mechanism by which protein molecules assemble during the early stage of amyloid formation.
    Keywords:  amyloid; oligomer; protein aggregation; protein misfolding; protofibril
    DOI:  https://doi.org/10.1016/j.jmb.2024.168461
  8. Biophys Chem. 2024 Jan 23. pii: S0301-4622(24)00020-6. [Epub ahead of print]307 107191
      Intracellular aggregation of transactive response DNA binding protein of 43 kDa (TDP-43) is a hallmark of neurodegenerative diseases such as amyotrophic lateral sclerosis. While primarily a nuclear protein, TDP-43 translocates to the cytosol during cellular stress. Consequences of cytosolic accumulation of TDP-43 is difficult to evaluate in the absence of exogenous toxins. Here, we demonstrate spatiotemporal control over the nuclear import of TDP-43 by installing a photocage (ortho-nitrobenzyl ester) on a single lysine residue (K84) through amber codon suppression in HEK293T cells. Translocation of this cytosolic construct is photo-triggerable in a dose-dependent manner with 355 nm light. Interestingly, both fluid- and solid-like puncta were found based on fluorescence recovery after photobleaching experiments, similar to what is expected of stress granules and intracellular aggregates, respectively. This optogenetic method is advantageous as it is minimally perturbative and broadly applicable to other studies of protein translocation between cellular compartments.
    Keywords:  Amyotrophic lateral sclerosis; FRAP; O-nitrobenzyl-oxycarbonyl-Nε-l-lysine; Optogenetics; Stress granules
    DOI:  https://doi.org/10.1016/j.bpc.2024.107191
  9. Nat Commun. 2024 Feb 01. 15(1): 965
      Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-β peptide (Aβ) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aβ42 fibril surface, consisting of three C-terminal β-strands and particularly the solvent-exposed β-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aβ42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.
    DOI:  https://doi.org/10.1038/s41467-024-45192-4