bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2024‒08‒25
twenty-one papers selected by
Verena Kohler, Umeå University



  1. Pharmacol Rev. 2024 Aug 20. pii: PHARMREV-AR-2023-001111. [Epub ahead of print]
      α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease (PD), Dementia with Lewy Bodies and Multiple System Atrophy. Various factors, including post-translational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the co-occurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. Significance Statement α-Synuclein as a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple post-translational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease and potential therapeutic opportunities.
    Keywords:  Glycosylation; Oxidative stress/antioxidants; Parkinson's Disease; Protein phosphorylation; Sumoylation; Ubiquitination; acetylation; dementia; neurodegeneration
    DOI:  https://doi.org/10.1124/pharmrev.123.001111
  2. Nat Commun. 2024 Aug 17. 15(1): 7083
      Oligomeric species arising during the aggregation of α-synuclein are implicated as a major source of toxicity in Parkinson's disease, and thus a major potential drug target. However, both their mechanism of formation and role in aggregation are largely unresolved. Here we show that, at physiological pH and in the absence of lipid membranes, α-synuclein aggregates form by secondary nucleation, rather than simple primary nucleation, and that this process is enhanced by agitation. Moreover, using a combination of single molecule and bulk level techniques, we identify secondary nucleation on the surfaces of existing fibrils, rather than formation directly from monomers, as the dominant source of oligomers. Our results highlight secondary nucleation as not only the key source of oligomers, but also the main mechanism of aggregate formation, and show that these processes take place under conditions which recapitulate the neutral pH and ionic strength of the cytosol.
    DOI:  https://doi.org/10.1038/s41467-024-50692-4
  3. Cell Death Differ. 2024 Aug 22.
      Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.
    DOI:  https://doi.org/10.1038/s41418-024-01356-9
  4. Phys Chem Chem Phys. 2024 Aug 23.
      Pathological aggregation of α-synuclein (α-syn) into amyloid fibrils is a major feature of Parkinson's disease (PD). The self-assembly of α-syn is mainly governed by a non-amyloid-β component core (NACore). However, the effects of concentrations and temperatures on their conformational transition remain unclear. To answer this question, we investigated the aggregation kinetics of NACore oligomers in silico by performing several independent all-atom molecular dynamics simulations. The simulation results show that tetramers are more prone to form β-sheets at 300 K than dimers and octamers. We also found that the NACore oligomers had higher β-sheet and β-barrel contents at 310 K. The inter-chain hydrophobic interactions, the backbone hydrogen bonding, the residue-residue interactions between V70-V77 as well as V77-V77 play important roles in the aggregation tendency of NACore octamers at 310 K. Interestingly, the energy gap analysis revealed that the conformational transition of NACore oligomers from intermediate states (β-barrel conformation) to stable structures (β-sheet layers) was dependent on the temperatures. In short, our study provides insight into the kinetic and thermodynamic mechanisms of the conformational transition of NACore at different concentrations and temperatures, contributing to a better understanding of the aggregation process of α-syn in Parkinson's disease.
    DOI:  https://doi.org/10.1039/d4cp02131b
  5. Curr Alzheimer Res. 2024 Aug 16.
      BACKGROUND: Neurodegenerative disorders like Alzheimer's disease (AD) involve the abnormal aggregation of tau protein, which forms toxic oligomers and amyloid deposits. The structure of tau protein is influenced by the conformational states of distinct proline residues, which are regulated by peptidyl-prolyl isomerases (PPIases). However, there has been no research on the impact of human cyclophilin A (CypA) as a PPIase on (non-phosphorylated) tau protein aggregation.METHODS: On the basis of these explanations, we used various spectroscopic techniques to explore the effects of CypA on tau protein aggregation behavior.
    RESULTS: We demonstrated the role of the isomerization activity of CypA in promoting the formation of tau protein amyloid fibrils with well-defined and highly ordered cross-β structures. According to the "cistauosis hypothesis," CypA's ability to enhance tau protein fibril formation in AD is attributed to the isomerization of specific proline residues from the trans to cis configuration. To corroborate this theory, we conducted refolding experiments using lysozyme as a model protein. The presence of CypA increased lysozyme aggregation and impeded its refolding process. It is known that proper refolding of lysozyme relies on the correct (trans) isomerization of two critical proline residues.
    CONCLUSION: Thus, our findings confirmed that CypA induces the trans-to-cis isomerization of specific proline residues, ultimately leading to increased aggregation. Overall, this study highlights the emerging role of isomerization in tau protein pathogenesis in AD.
    Keywords:  Alzheimer's disease (AD); amyloid aggregation; cyclophilin A (CypA); disaggregation; refolding; tau protein.
    DOI:  https://doi.org/10.2174/0115672050330163240812050223
  6. Front Neurosci. 2024 ;18 1436262
      Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
    Keywords:  misfolding; neurodegeneration; oligomers; propagation; seeding
    DOI:  https://doi.org/10.3389/fnins.2024.1436262
  7. Expert Opin Investig Drugs. 2024 Aug 23.
      INTRODUCTION: The misfolding and aggregation of proteins are associated with various neurodegenerative diseases, such as Alzheimer's disease (AD). The small-molecule engineered antibodies, such as single-chain fragment variable (scFv) antibodies and nanobodies (Nbs), have gained attention in recent years due to their strong conformational specificity, ability to cross the blood‒brain barrier (BBB), low immunogenicity, and enhanced proximity to active sites within aggregates.AREAS COVERED: We have reviewed recent advances in therapies involving scFvs and Nbs that efficiently and specifically target pathological protein aggregates. Relevant publications were searched for in MEDLINE, GOOGLE SCHOLAR, Elsevier ScienceDirect and Wiley Online Library.
    EXPERT OPINION: We reviewed the recent and specific targeting of pathological protein aggregates by scFvs and Nbs. These engineered antibodies can inhibit the aggregation or promote the disassembly of misfolded proteins by recognizing antigenic epitopes or through conformational specificity. Additionally, we discuss strategies for improving the effective application of engineered antibodies in treating AD. These technological strategies will lay the foundation for the clinical application of small-molecule antibody drugs in developing effective treatments for neurological diseases. Through rational application strategies, small-molecule engineered antibodies are expected to have significant potential in targeted therapy for neurological disorders.
    Keywords:  Single-chain fragment variable antibodies; alzheimer’s disease; nanobodies; protein aggregates
    DOI:  https://doi.org/10.1080/13543784.2024.2396911
  8. Adv Sci (Weinh). 2024 Aug 19. e2404916
      Understanding the mechanisms underlying amyloid-β (Aβ) aggregation is pivotal in the context of Alzheimer's disease. This study aims to elucidate the secondary nucleation process of Aβ42 peptides by combining experimental and computational methods. Using a newly developed nanopipette-based amyloid seeding and translocation assay, confocal fluorescence spectroscopy, and molecular dynamics simulations, the influence of the seed properties on Aβ aggregation is investigated. Both fragmented and unfragmented seeds played distinct roles in the formation of oligomers, with fragmented seeds facilitating the formation of larger aggregates early in the incubation phase. The results show that secondary nucleation leads to the formation of oligomers of various sizes and structures as well as larger fibrils structured in β-sheets. From these findings a mechanism of secondary nucleation involving two types of aggregate populations, one released and one growing on the mother fiber is proposed.
    Keywords:  amyloid; confocal fluorescence spectroscopy; nanopore; secondary nucleation; single molecule
    DOI:  https://doi.org/10.1002/advs.202404916
  9. Trends Biochem Sci. 2024 Aug 20. pii: S0968-0004(24)00164-6. [Epub ahead of print]
      Loss of protein homeostasis (proteostasis) is a common hallmark of aging and age-associated diseases. Considered as the guardian of proteostasis, the proteostasis network (PN) acts to preserve the functionality of proteins during their lifetime. However, its activity declines with age, leading to disease manifestation. While reactive oxygen species (ROS) were traditionally considered culprits in this process, recent research challenges this view. While harmful at high concentrations, moderate ROS levels protect the cell against age-mediated onset of proteotoxicity by activating molecular chaperones, stress response pathways, and autophagy. This review explores the nuanced roles of ROS in proteostasis and discusses the most recent findings regarding the redox regulation of the PN and its potential in extending healthspan and delaying age-related pathologies.
    Keywords:  aging; neurodegeneration; oxidative stress; protein aggregation; protein homeostasis; protein misfolding
    DOI:  https://doi.org/10.1016/j.tibs.2024.07.001
  10. Front Neurosci. 2024 ;18 1410139
      PD is a complex, multifactorial neurodegenerative disease, which occurs sporadically in aged population, with some genetically linked cases. Patients develop a very obvious locomotor phenotype, with symptoms such as bradykinesia, resting tremor, muscular rigidity, and postural instability. At the cellular level, PD pathology is characterized by the presence of intracytoplasmic neurotoxic aggregates of misfolded proteins and dysfunctional organelles, resulting from failure in mechanisms of proteostasis. Nonmotor symptoms, such as constipation and olfactory deficits, are also very common in PD. They include alteration in the circadian clock, and defects in the sleep-wake cycle, which is controlled by the clock. These non-motor symptoms precede the onset of the motor symptoms by many years, offering a window of therapeutic intervention that could delay-or even prevent-the progression of the disease. The mechanistic link between aberrant circadian rhythms and neurodegeneration in PD is not fully understood, although proposed underlying mechanisms include alterations in protein homeostasis (proteostasis), which can impact protein levels of core components of the clock. Loss of proteostasis depends on the progressive pathological decline in the proteolytic activity of two major degradative systems, the ubiquitin-proteasome and the lysosome-autophagy systems, which is exacerbated in age-dependent neurodegenerative conditions like PD. Accordingly, it is known that promoting proteasome or autophagy activity increases lifespan, and rescues the pathological phenotype of animal models of neurodegeneration, presumably by enhancing the degradation of misfolded proteins and dysfunctional organelles, which are known to accumulate in these models, and to induce intracellular damage. We can enhance proteostasis by pharmacologically inhibiting or down-regulating Usp14, a proteasome-associated deubiquitinating enzyme (DUB). In a previous work, we showed that inhibition of Usp14 enhances the activity of the ubiquitin-proteasome system (UPS), autophagy and mitophagy, and abolishes motor symptoms of two well-established fly models of PD that accumulate dysfunctional mitochondria. In this work we extended the evidence on the protective effect of Usp14 down-regulation, and investigated the beneficial effect of down-regulating Usp14 in a Pink1 Drosophila model of PD that develop circadian and sleep dysfunction. We show that down-regulation of Usp14 ameliorates sleep disturbances and circadian defects that are associated to Pink1 KO flies.
    Keywords:  Drosophila; PINK1; USP14; circadian clock; mitochondrial fission; sleep
    DOI:  https://doi.org/10.3389/fnins.2024.1410139
  11. Brain Res. 2024 Aug 20. pii: S0006-8993(24)00419-0. [Epub ahead of print]1844 149165
      Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
    Keywords:  Aging Pathways; Alzheimer’s Disease; Neurodegeneration; Senescent Cells; Tau Proteins; Therapeutic Targets
    DOI:  https://doi.org/10.1016/j.brainres.2024.149165
  12. Proc Natl Acad Sci U S A. 2024 Aug 27. 121(35): e2321633121
      α-synuclein (α-syn) assembles into structurally distinct fibril polymorphs seen in different synucleinopathies, such as Parkinson's disease and multiple system atrophy. Targeting these unique fibril structures using chemical ligands holds diagnostic significance for different disease subtypes. However, the molecular mechanisms governing small molecules interacting with different fibril polymorphs remain unclear. Here, we investigated the interactions of small molecules belonging to four distinct scaffolds, with different α-syn fibril polymorphs. Using cryo-electron microscopy, we determined the structures of these molecules when bound to the fibrils formed by E46K mutant α-syn and compared them to those bound with wild-type α-syn fibrils. Notably, we observed that these ligands exhibit remarkable binding adaptability, as they engage distinct binding sites across different fibril polymorphs. While the molecular scaffold primarily steered the binding locations and geometries on specific sites, the conjugated functional groups further refined this adaptable binding by fine-tuning the geometries and binding sites. Overall, our finding elucidates the adaptability of small molecules binding to different fibril structures, which sheds light on the diagnostic tracer and drug developments tailored to specific pathological fibril polymorphs.
    Keywords:  amyloid fibril; chemical ligands; polymorphism; protein–ligand interaction; α-synuclein
    DOI:  https://doi.org/10.1073/pnas.2321633121
  13. Brain Commun. 2024 ;6(4): fcae193
      Abnormal α-synuclein (αSyn), including an oligomeric form of αSyn, accumulates and causes neuronal dysfunction in the brains of patients with multiple system atrophy. Neuroprotective drugs that target abnormal αSyn aggregation have not been developed for the treatment of multiple system atrophy. In addition, treating diseases at an early stage is crucial to halting the progress of neuronal damage in neurodegeneration. In this study, using early-stage multiple system atrophy mouse model and in vitro kinetic analysis, we investigated how intranasal and oral administration of trehalose can improve multiple system atrophy pathology and clinical symptoms. The multiple system atrophy model showed memory impairment at least four weeks after αSyn induction. Behavioural and physiological analyses showed that intranasal and oral administration of trehalose reversed memory impairments to near-normal levels. Notably, trehalose treatment reduced the amount of toxic αSyn and increased the aggregated form of αSyn in the multiple system atrophy model brain. In vitro kinetic analysis confirmed that trehalose accelerated the aggregate formation of αSyn. Based on our findings, we propose a novel strategy whereby accelerated αSyn aggregate formation leads to reduced exposure to toxic αSyn oligomers, particularly during the early phase of disease progression.
    Keywords:  aggregation; intranasal administration; multiple system atrophy; trehalose; α-synuclein oligomer
    DOI:  https://doi.org/10.1093/braincomms/fcae193
  14. J Am Chem Soc. 2024 Aug 23.
      The two most abundant isoforms of amyloid-β (Aβ) are the 40- (Aβ40) and 42-residue (Aβ42) peptides. Since they coexist and there is a correlation between toxicity and the ratio of the two isoforms, quantitative characterization of their interactions is crucial for understanding the Aβ aggregation mechanism. In this work, we follow the aggregation of individual isoforms in a mixture using single-molecule FRET spectroscopy by labeling Aβ42 and Aβ40 with the donor and acceptor fluorophores, respectively. We found that there are two phases of aggregation. The first phase consists of coaggregation of Aβ42 with a small amount of Aβ40, while the second phase results mostly from aggregation of Aβ40. We also found that the aggregation of Aβ42 is slowed by Aβ40 while the aggregation of Aβ40 is accelerated by Aβ42 in a concentration-dependent manner. The formation of oligomers was monitored by incubating mixtures in a plate reader and performing a single-molecule free-diffusion experiment at several different stages of aggregation. The detailed properties of the oligomers were obtained by maximum likelihood analysis of fluorescence bursts. The FRET efficiency distribution is much broader than that of the Aβ42 oligomers, indicating the diversity in isoform composition of the oligomers. Pulsed interleaved excitation experiments estimate that the fraction of Aβ40 in the co-oligomers in a 1:1 mixture of Aβ42 and Aβ40 varies between 0 and 20%. The detected oligomers were mostly co-oligomers especially at the physiological ratio of Aβ42 and Aβ40 (1:10), suggesting the critical role of Aβ40 in oligomer formation and aggregation.
    DOI:  https://doi.org/10.1021/jacs.4c06372
  15. Heliyon. 2024 Aug 15. 10(15): e34963
      Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
    Keywords:  ALS; Prion-like; Protein
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e34963
  16. Bioorg Med Chem Lett. 2024 Aug 14. pii: S0960-894X(24)00331-7. [Epub ahead of print]112 129929
      Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer's disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ42 "VVIA-NH2" and its retro-sequence "AIVV-NH2." A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide 13 (Ala-Ile-Aib-Val-NH2) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer "Aib" in peptide 13 manifested the conformational transition from cross-β-sheets to α-helical content in Aβ42. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide 13. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of 13, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.
    Keywords:  Alzheimer’s disease; Amyloid-beta; Aβ aggregation; Neurotoxicity; Tetrapeptides
    DOI:  https://doi.org/10.1016/j.bmcl.2024.129929
  17. Prog Brain Res. 2024 ;pii: S0079-6123(24)00086-4. [Epub ahead of print]289 1-19
      Parkinson's disease (PD) is a prevalent neurodegenerative disease marked by dopaminergic neuronal loss and misfolded alpha-synuclein (α-syn) accumulation, which results in both motor and cognitive symptoms. Its occurrence grows with age, with a larger prevalence among males. Despite substantial study, effective medicines to reduce or stop the progression of diseases remain elusive. Interest has grown in examining dietary components, such as caffeine present in coffee, for potential medicinal effects. Epidemiological studies imply a lower incidence of PD with coffee drinking, attributable to caffeine's neuroprotective abilities. Beyond caffeine, coffee constituent like chlorogenic acid and cafestol have anti-Parkinsonian benefits. Moreover, coffee use has been related with variations in gut microbiota composition, which may reduce intestinal inflammation and prevent protein misfolding in enteric nerves, perhaps through the microbiota-gut-brain axis. This review gives a summary of the neuroprotective effects of coffee, investigating both its motor and non-motor advantages in individuals with PD as well as in experimental models of PD. We reviewed some bioactive constituents of coffee, their respective interactions with misfolded α-syn accumulation, and its emerging mechanisms associated to the gut microbiome.
    Keywords:  Alpha-synuclein; Coffee; Gut microbiota; Neuroprotective; Parkinson's disease; Protein misfolding
    DOI:  https://doi.org/10.1016/bs.pbr.2024.06.001
  18. Expert Opin Ther Targets. 2024 Aug 22. 1-12
      INTRODUCTION: Vacuolar Protein Sorting 35 (VPS35) is pivotal in the retromer complex, governing transmembrane protein trafficking within cells, and its dysfunction is implicated in neurodegenerative diseases. A missense mutation, Asp620Asn (D620N), specifically ties to familial late-onset Parkinson's, while reduced VPS35 levels are observed in Alzheimer's, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and tauopathies. VPS35's absence in certain neurons during development can initiate neurodegeneration, highlighting its necessity for neural health. Present therapeutic research mainly targets the clearance of harmful protein aggregates and symptom management. Innovative treatments focusing on VPS35 are under investigation, although fully understanding the mechanisms and optimal targeting strategies remain a challenge.AREAS COVERED: This review offers a detailed account of VPS35's discovery, its role in neurodegenerative mechanisms - especially in Parkinson's and Alzheimer's - and its link to other disorders. It shines alight on recent insights into VPS35's function in development, disease, and as a therapeutic target.
    EXPERT OPINION: VPS35 is integral to cellular function and disease association, making it a significant candidate for developing therapies. Progress in modulating VPS35's activity may lead to breakthrough treatments that not only slow disease progression but may also act as biomarkers for neurodegeneration risk, marking a step forward in managing these complex conditions.
    Keywords:  Alzheimer’s disease; Parkinson’s disease; VPS35; neurodegenerative diseases; retromer
    DOI:  https://doi.org/10.1080/14728222.2024.2392700
  19. Biosci Biotechnol Biochem. 2024 Aug 21. pii: zbae114. [Epub ahead of print]
      Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.
    Keywords:  Amyloid fibril formation; Eucalyptus; Plant extracts; Polyphenol; α-synuclein
    DOI:  https://doi.org/10.1093/bbb/zbae114
  20. Biochim Biophys Acta Mol Cell Res. 2024 Aug 19. pii: S0167-4889(24)00167-8. [Epub ahead of print] 119824
      Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.
    Keywords:  Apicomplexa; Chaperones; ER stress; Heat shock response (HSR); Plasmodium; Proteasome; Proteostasis; Toxoplasma; UPR; UPS
    DOI:  https://doi.org/10.1016/j.bbamcr.2024.119824
  21. Cell Rep. 2024 Aug 19. pii: S2211-1247(24)00976-8. [Epub ahead of print]43(8): 114626
      The majority of severe early-onset and juvenile cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the FUS gene, resulting in rapid disease progression. Mutant FUS accumulates within stress granules (SGs), thereby affecting the dynamics of these ribonucleoprotein complexes. Here, we define the interactome of the severe mutant FUSP525L variant in human induced pluripotent stem cell (iPSC)-derived motor neurons. We find increased interaction of FUSP525L with the PARP1 enzyme, promoting poly-ADP-ribosylation (PARylation) and binding of FUS to histone H1.2. Inhibiting PARylation or reducing H1.2 levels alleviates mutant FUS aggregation, SG alterations, and apoptosis in human motor neurons. Conversely, elevated H1.2 levels exacerbate FUS-ALS phenotypes, driven by the internally disordered terminal domains of H1.2. In C. elegans models, knockdown of H1.2 and PARP1 orthologs also decreases FUSP525L aggregation and neurodegeneration, whereas H1.2 overexpression worsens ALS-related changes. Our findings indicate a link between PARylation, H1.2, and FUS with potential therapeutic implications.
    Keywords:  CP: Cell biology; FUS; PARP1; PARylation; amyotrophic lateral sclerosis; histone H1.2; neurodegeneration; protein aggregation; proteostasis; stress granules
    DOI:  https://doi.org/10.1016/j.celrep.2024.114626