Int J Mol Sci. 2025 Feb 14. pii: 1615. [Epub ahead of print]26(4):
Parkinson's disease (PD) is characterized by widespread distribution of Lewy bodies, which are composed of phosphorylated and aggregated forms of α-Synuclein (α-Syn), in the brain. Although the accumulation and propagation of α-Syn contribute to the development of PD, the involvement of the blood-brain barrier (BBB) in these processes remains unknown. Pericytes, one of the cell types that constitute the BBB, degrade various forms of α-Syn. However, the detailed mechanisms involved in α-Syn degradation by pericytes remain poorly understood. Therefore, in this study, we aimed to determine the ability of the BBB-constituting cells, particularly primary cultures of rat pericytes, brain endothelial cells, and astrocytes, to degrade α-Syn. After α-Syn uptake by the cells, intracellular α-Syn decreased only in pericytes. This pericyte-specific α-Syn decrease was inhibited by an autophagy inhibitor, bafilomycin A1, and a proteasome inhibitor, MG132. siRNA-mediated knockdown of degradation enzymes or familial PD-associated genes, including cathepsin D, DJ-1, and LRRK2, did not affect α-Syn clearance in pericytes. However, pharmacological inhibitors of Akt, ERK, and p38 MAPK inhibited α-Syn degradation by pericytes. In conclusion, our results suggest that α-Syn degradation by pericytes is mediated by an autophagy-lysosome system and a ubiquitin-proteasome system via α-Syn-activated Akt, ERK, and p38 MAPK signaling pathways.
Keywords: Akt; ERK; Parkinson’s disease; alpha-Synuclein; autophagy; blood–brain barrier; p38 MAPK; pericyte; ubiquitin–proteasome system