bims-proteo Biomed News
on Proteostasis
Issue of 2020‒05‒17
thirty-six papers selected by
Eric Chevet
INSERM


  1. Environ Microbiol. 2020 May 15.
      Most secretory proteins are folded and modified in the endoplasmic reticulum (ER), but protein folding is error-prone, resulting in toxic protein aggregation and cause ER stress. Irreversibly misfolded proteins are subjected to ER-associated degradation (ERAD), modified by ubiquitination, and degraded by the 26S proteasome. The yeast ERAD ubiquitin ligase Hrd1p and multispanning membrane protein Der1p are involved in ubiquitination and transportation of the folding-defective proteins. Here, we performed functional characterization of MoHrd1 and MoDer1 and revealed that both of them are localized to the ER, and are pivotal for ERAD substrate degradation and the ER stress response. MoHrd1 and MoDer1 are involved in hyphal growth, asexual reproduction, infection-related morphogenesis, protein secretion, and pathogenicity of M. oryzae. Importantly, MoHrd1 and MoDer1 mediated conidial autophagic cell death and subsequent septin ring assembly at the appressorium pore, leading to abnormal appressorium development and loss of pathogenicity. In addition, deletion of MoHrd1 and MoDer1 activated the basal unfolded protein response (UPR) and autophagy, suggesting that crosstalk between ERAD and two other closely related mechanisms in ER quality control system (UPR and autophagy) governs the ER stress response. Our study indicates the importance of ERAD function in fungal development and pathogenesis of M. oryzae. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1111/1462-2920.15069
  2. Front Plant Sci. 2020 ;11 477
      Autophagy is an intracellular trafficking and degradation system for recycling of damaged organelles, mis-folded proteins and cytoplasmic constituents. Autophagy can be divided into non-selective autophagy and selective autophagy according to the cargo specification. Key to the process is the timely formation of the autophagosome, a double-membrane structure which is responsible for the delivery of damaged organelles and proteins to lysosomes or vacuoles for their turnover. Autophagosomes are formed by the closure of cup-shaped phagophore which depends on the proper communication with membrane contributors. The endoplasmic reticulum (ER) is a major membrane source for autophagosome biogenesis whereby the ER connects with phagophore through membrane contact sites (MCSs). MCSs are closely apposed domains between organelle membranes where lipids and signals are exchanged. Lipid transfer proteins (LTPs) are a large family of proteins including Oxysterol-binding protein related proteins (ORP) which can be found at MCSs and mediate lipid transfer in mammals and yeast. In addition, interaction between autophagosomes and other organelles can also be detected in selective autophagy for selection and degradation of various damaged organelles. Selective autophagy is mediated by the binding of a receptor or an adaptor between a cargo and an autophagosome. Here we summarize what we know about the MCS between autophagosomes and other organelles in eukaryotes. We then discuss progress in our understanding about ORPs at MCSs in plants and the underlying mechanisms of selective autophagy in plants with a focus on receptors/adaptors that are involved in the interaction of the autophagosome with other cytoplasmic constituents, including the Neighbor of BRCA1 gene 1 (NBR1), ATG8-interacting protein 1 (ATI1), Regulatory Particle Non-ATPase 10 (RPN10), and Dominant Suppressor of KAR2 (DSK2).
    Keywords:  MCS; NBR1; ORP; autophagosome; autophagy
    DOI:  https://doi.org/10.3389/fpls.2020.00477
  3. Nat Commun. 2020 May 14. 11(1): 2401
      The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.
    DOI:  https://doi.org/10.1038/s41467-020-15694-y
  4. Proc Natl Acad Sci U S A. 2020 May 15. pii: 201916584. [Epub ahead of print]
      The mitochondria-associated membrane (MAM) has emerged as a cellular signaling hub regulating various cellular processes. However, its molecular components remain unclear owing to lack of reliable methods to purify the intact MAM proteome in a physiological context. Here, we introduce Contact-ID, a split-pair system of BioID with strong activity, for identification of the MAM proteome in live cells. Contact-ID specifically labeled proteins proximal to the contact sites of the endoplasmic reticulum (ER) and mitochondria, and thereby identified 115 MAM-specific proteins. The identified MAM proteins were largely annotated with the outer mitochondrial membrane (OMM) and ER membrane proteins with MAM-related functions: e.g., FKBP8, an OMM protein, facilitated MAM formation and local calcium transport at the MAM. Furthermore, the definitive identification of biotinylation sites revealed membrane topologies of 85 integral membrane proteins. Contact-ID revealed regulatory proteins for MAM formation and could be reliably utilized to profile the proteome at any organelle-membrane contact sites in live cells.
    Keywords:  FKBP8; membrane contact site; membrane protein topology; mitochondria-associated membrane (MAM); proximity labeling
    DOI:  https://doi.org/10.1073/pnas.1916584117
  5. Cell Death Dis. 2020 May 12. 11(5): 360
      Cellular stress response contributes to epithelial defense in adaptation to environment changes. Galectins play a pivotal role in the regulation of this response in malignant cells. However, precise underlying mechanisms are largely unknown. Here we demonstrate that Galectin-3, a pro and anti-apoptotic lectin, is required for setting up a correct cellular response to stress by orchestrating several effects. First, Galectin-3 constitutes a key post-transcriptional regulator of stress-related mRNA regulons coordinating the cell metabolism, the mTORC1 complex or the unfolded protein response (UPR). Moreover, we demonstrated the presence of Galectin-3 with mitochondria-associated membranes (MAM), and its interaction with proteins located at the ER or mitochondrial membranes. There Galectin-3 prevents the activation and recruitment at the mitochondria of the regulator of mitochondria fission DRP-1. Accordingly, loss of Galectin-3 impairs mitochondrial morphology, with more fragmented and round mitochondria, and dynamics both in normal and cancer epithelial cells in basal conditions. Importantly, Galectin-3 deficient cells also display changes of the activity of the mitochondrial respiratory chain complexes, of the mTORC1/S6RP/4EBP1 translation pathway and reactive oxygen species levels. Regarding the ER, Galectin-3 did not modify the activities of the 3 branches of the UPR in basal conditions. However, Galectin-3 favours an adaptative UPR following ER stress induction by Thapsigargin treatment. Altogether, at the ER-mitochondria interface, Galectin-3 coordinates the functioning of the ER and mitochondria, preserves the integrity of mitochondrial network and modulates the ER stress response.
    DOI:  https://doi.org/10.1038/s41419-020-2556-3
  6. Front Cell Dev Biol. 2020 ;8 270
      Mitochondria are essential organelles important for energy production, proliferation, and cell death. Biogenesis, homeostasis, and degradation of this organelle are tightly controlled to match cellular needs and counteract chronic stress conditions. Despite providing their own DNA, the vast majority of mitochondrial proteins are encoded in the nucleus, synthesized by cytosolic ribosomes, and subsequently imported into different mitochondrial compartments. The integrity of the mitochondrial proteome is permanently challenged by defects in folding, transport, and turnover of mitochondrial proteins. Therefore, damaged proteins are constantly sequestered from the outer mitochondrial membrane and targeted for proteasomal degradation in the cytosol via mitochondrial-associated degradation (MAD). Recent studies identified specialized quality control mechanisms important to decrease mislocalized proteins, which affect the mitochondrial import machinery. Interestingly, central factors of these ubiquitin-dependent pathways are shared with the ER-associated degradation (ERAD) machinery, indicating close collaboration between both tubular organelles. Here, we summarize recently described cellular stress response mechanisms, which are triggered by defects in mitochondrial protein import and quality control. Moreover, we discuss how ubiquitin-dependent degradation is integrated with cytosolic stress responses, particularly focused on the crosstalk between MAD and ERAD.
    Keywords:  C. elegans; Cdc48; Msp1; mitochondria; mitochondria-associated degradation (MAD); p97; proteostasis; ubiquitin
    DOI:  https://doi.org/10.3389/fcell.2020.00270
  7. Semin Cell Dev Biol. 2020 May 08. pii: S1084-9521(18)30313-6. [Epub ahead of print]
      Type 1 and type 2 diabetes are associated with loss of β cell function. Optimal β cell function is linked to protein homeostasis in the endoplasmic reticulum (ER). Here, we review the roles of ER protein quality-control mechanisms, including the unfolded protein response (UPR), autophagy (specifically ER-phagy) and ER-associated degradation (ERAD), in β cells. We propose that different quality control mechanisms may control different aspects of β cell biology (i.e. function, survival, and identity), thereby contributing to disease pathogenesis.
    Keywords:  ER; ER-phagy; ERAD; UPR; diabetes; β cells
    DOI:  https://doi.org/10.1016/j.semcdb.2020.04.006
  8. Biomolecules. 2020 May 07. pii: E728. [Epub ahead of print]10(5):
      An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
    Keywords:  chaperones; misrouting; proteostasis; quality control
    DOI:  https://doi.org/10.3390/biom10050728
  9. Toxins (Basel). 2020 May 11. pii: E316. [Epub ahead of print]12(5):
      Shiga toxins (Stxs) expressed by the enterohaemorrhagic Escherichia coli and enteric Shigella dysenteriae 1 pathogens are protein synthesis inhibitors. Stxs have been shown to induce apoptosis via the activation of extrinsic and intrinsic pathways in many cell types (epithelial, endothelial, and B cells) but the link between the protein synthesis inhibition and caspase activation is still unclear. Endoplasmic reticulum (ER) stress induced by the inhibition of protein synthesis may be this missing link. Here, we show that the treatment of Burkitt lymphoma (BL) cells with verotoxin-1 (VT-1 or Stx1) consistently induced the ER stress response by activation of IRE1 and ATF6-two ER stress sensors-followed by increased expression of the transcription factor C/REB homologous protein (CHOP). However, our data suggest that, although ER stress is systematically induced by VT-1 in BL cells, its role in cell death appears to be cell specific and can be the opposite: ER stress may enhance VT-1-induced apoptosis through CHOP or play a protective role through ER-phagy, depending on the cell line. Several engineered Stxs are currently under investigation as potential anti-cancer agents. Our results suggest that a better understanding of the signaling pathways induced by Stxs is needed before using them in the clinic.
    Keywords:  Burkitt lymphoma; ER stress; Gb3/CD77; apoptosis; autophagy; shiga toxins
    DOI:  https://doi.org/10.3390/toxins12050316
  10. Trends Cell Biol. 2020 Jun;pii: S0962-8924(20)30052-0. [Epub ahead of print]30(6): 452-466
      Lysosomes are of major importance for the regulation of cellular cholesterol homeostasis. Food-derived cholesterol and cholesterol esters contained within lipoproteins are delivered to lysosomes by endocytosis. From the lysosomal lumen, cholesterol is transported to the inner surface of the lysosomal membrane through the glycocalyx; this shuttling requires Niemann-Pick C (NPC) 1 and NPC2 proteins. The lysosomal membrane proteins lysosomal-associated membrane protein (LAMP)-2 and lysosomal integral membrane protein (LIMP)-2/SCARB2 also bind cholesterol. LAMP-2 may serve as a cholesterol reservoir, whereas LIMP-2, like NPC1, is able to transport cholesterol through a transglycocalyx tunnel. Contact sites and fusion events between lysosomes and other organelles mediate the distribution of cholesterol. Lysosomal cholesterol content is sensed thereby regulating mammalian target of rapamycin complex (mTORC)-dependent signaling. This review summarizes our understanding of the major steps in cholesterol handling from the moment it enters the lysosome until it leaves this compartment.
    Keywords:  Niemann–Pick type C; cholesterol; contact sites; lysosomal integral membrane protein-2; lysosomes
    DOI:  https://doi.org/10.1016/j.tcb.2020.02.007
  11. Biochem J. 2020 May 15. 477(9): 1721-1732
      Systemic amyloid diseases are characterized by the deposition of an amyloidogenic protein as toxic oligomers and amyloid fibrils on tissues distal from the site of protein synthesis. Traditionally, these diseases have been viewed as disorders of peripheral target tissues where aggregates are deposited, and toxicity is observed. However, recent evidence highlights an important role for endoplasmic reticulum (ER) proteostasis pathways within tissues synthesizing and secreting amyloidogenic proteins, such as the liver, in the pathogenesis of these disorders. Here, we describe the pathologic implications of ER proteostasis and its regulation on the toxic extracellular aggregation of amyloidogenic proteins implicated in systemic amyloid disease pathogenesis. Furthermore, we discuss the therapeutic potential for targeting ER proteostasis to reduce the secretion and toxic aggregation of amyloidogenic proteins to mitigate peripheral amyloid-associated toxicity involved in the onset and progression of systemic amyloid diseases.
    Keywords:  ER proteostasis; amyloidogenic proteins; unfolded protein response
    DOI:  https://doi.org/10.1042/BCJ20190312
  12. Mol Syst Biol. 2020 May;16(5): e9156
      Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
    Keywords:  NFIL3; PAR-bZIP; liver injury; sepsis; super-enhancer
    DOI:  https://doi.org/10.15252/msb.20199156
  13. mBio. 2020 May 12. pii: e00711-20. [Epub ahead of print]11(3):
      Cryptococcus neoformans is a human-pathogenic fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised individuals. To investigate the roles of N-glycan core structure in cryptococcal pathogenicity, we constructed mutant strains of C. neoformans with defects in the assembly of lipid-linked N-glycans in the luminal side of the endoplasmic reticulum (ER). Deletion of ALG3 (alg3Δ), which encodes dolichyl-phosphate-mannose (Dol-P-Man)-dependent α-1,3-mannosyltransferase, resulted in the production of truncated neutral N-glycans carrying five mannose residues as a major species. Despite moderate or nondetectable defects in virulence-associated phenotypes in vitro, the alg3Δ mutant was avirulent in a mouse model of systemic cryptococcosis. Notably, the mutant did not show defects in early stages of host cell interaction during infection, including attachment to lung epithelial cells, opsonic/nonopsonic phagocytosis, and manipulation of phagosome acidification. However, the ability to drive macrophage cell death was greatly decreased in this mutant, without loss of cell wall remodeling capacity. Furthermore, deletion of ALG9 and ALG12, encoding Dol-P-Man-dependent α-1,2-mannosyltransferases and α-1,6-mannosyltransferases, generating truncated core N-glycans with six and seven mannose residues, respectively, also displayed remarkably reduced macrophage cell death and in vivo virulence. However, secretion levels of interleukin-1β (IL-1β) were not reduced in the bone marrow-derived dendritic cells obtained from Asc- and Gsdmd-deficient mice infected with the alg3Δ mutant strain, excluding the possibility that pyroptosis is a main host cell death pathway dependent on intact core N-glycans. Our results demonstrated N-glycan structures as a critical feature in modulating death of host cells, which is exploited by as a strategy for host cell escape for dissemination of C. neoformans IMPORTANCE We previously reported that the outer mannose chains of N-glycans are dispensable for the virulence of C. neoformans, which is in stark contrast to findings for the other human-pathogenic yeast, Candida albicans Here, we present evidence that an intact core N-glycan structure is required for C. neoformans pathogenicity by systematically analyzing alg3Δ, alg9Δ, and alg12Δ strains that have defects in lipid-linked N-glycan assembly and in in vivo virulence. The alg null mutants producing truncated core N-glycans were defective in inducing host cell death after phagocytosis, which is triggered as a mechanism of pulmonary escape and dissemination of C. neoformans, thus becoming inactive in causing fatal infection. The results clearly demonstrated the critical features of the N-glycan structure in mediating the interaction with host cells during fungal infection. The delineation of the roles of protein glycosylation in fungal pathogenesis not only provides insight into the glycan-based fungal infection mechanism but also will aid in the development of novel antifungal agents.
    Keywords:  ALG; Cryptococcus neoformans ; N-linked protein glycosylation; fungal pathogenesis
    DOI:  https://doi.org/10.1128/mBio.00711-20
  14. J Mol Med (Berl). 2020 May 11.
      Transmembrane BAX inhibitor motif containing 6 (TMBIM6), also known as Bax inhibitor-1, is an evolutionarily conserved protein involved in endoplasmic reticulum (ER) function. TMBIM6 is an ER Ca2+ leak channel and its deficiency enhances susceptibility to ER stress due to inhibition of the ER stress sensor IRE1α. It was previously shown that TMBIM6 overexpression improves glucose metabolism and that TMBIM6 knockout mice develop obesity. We here examined the metabolic alterations underlying the obese phenotype and subjected TMBIM6 knockout mice to indirect calorimetry and euglycemic-hyperinsulinemic tests with stable isotope dilution to gauge tissue-specific insulin sensitivity. This demonstrated no changes in heat production, food intake, activity or hepatic and peripheral insulin sensitivity. TMBIM6 knockout mice, however, featured a higher glucose-stimulated insulin secretion in vivo as assessed by the hyperglycemic clamp test and hepatic steatosis. This coincided with profound changes in glucose-mediated Ca2+ regulation in isolated pancreatic β cells and increased levels of IRE1α levels but no differences in downstream effects of IRE1α like increased Xbp1 mRNA splicing or Ire1-dependent decay of insulin mRNA in the pancreas. We therefore conclude that lack of TMBIM6 does not affect insulin sensitivity but leads to hyperinsulinemia, which serves to explain the weight gain. TMBIM6-mediated metabolic alterations are mainly caused by its role as a Ca2+ release channel in the ER. KEY MESSAGES: TMBIM6-/- leads to obesity and hepatic steatosis. Food intake and energy expenditure are not changed in TMBIM6-/- mice. No changes in insulin resistance in TMBIM6-/- mice. Increased insulin secretion caused by altered calcium dynamics in β cells.
    Keywords:  Bax inhibitor-1; Hepatic Steatosis; Insulin secretion; Obesity; TMBIM6
    DOI:  https://doi.org/10.1007/s00109-020-01914-x
  15. Biol Reprod. 2020 May 14. pii: ioaa074. [Epub ahead of print]
      Tubulobulbar complexes (TBCs) internalize intercellular junctions during sperm release. One of the characteristic features of TBCs is that they form 'bulbs' or swollen regions that have well defined membrane contact sites (MCS) with adjacent cisternae of endoplasmic reticulum. Previously, we have localized the IP3R calcium channel to the TBC bulb-ER contacts and have hypothesized that fluctuations in local calcium levels may facilitate the maturation of TBC bulbs into putative endosomes, or alter local actin networks that cuff adjacent tubular regions of the TBCs. To test this, we injected the testes of Sprague Dawley rats with siRNAs against IP3R1 and processed the tissues for either western blot, immunofluorescence, or electron microscopy. When compared to control testes injected with non-targeting siRNAs, Sertoli cells in knocked-down testes showed significant morphological alterations to the actin networks including a loss of TBC actin and the appearance of ectopic para-crystalline actin bundles in Sertoli cell stalks. There also was a change in the abundance and distribution of TBC-ER contact sites and large internalized endosomes. This disruption of TBCs resulted in delay of the withdrawal of apical processes away from spermatids and in spermiation. Together, these findings are consistent with the hypothesis that calcium exchange at TBC-ER contacts is involved both in regulating actin dynamics at TBCs and in the maturing of TBC bulbs into endosomes. The results are also consistent with the hypothesis that TBCs are part of the sperm release mechanism.
    Keywords:  Calcium; ER contact; Endocytosis; IP3R; Sertoli cells; Spermatid; Testis; Tubulobulbar complexes
    DOI:  https://doi.org/10.1093/biolre/ioaa074
  16. Cells. 2020 May 08. pii: E1160. [Epub ahead of print]9(5):
      Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1α along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1α function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.
    Keywords:  IRE1α; ROS; calcium; endoplasmic reticulum stress; insulin resistance; metaflammation; obesity; type 2 diabetes
    DOI:  https://doi.org/10.3390/cells9051160
  17. Autophagy. 2020 May 13. 1-3
      Classical macroautophagy/autophagy functions to maintain cell health during stressful conditions by targeting cytosolic components for degradation and recycling through the lysosomal pathway. In contrast, nondegradative secretory autophagy functions as an alternative autophagy mechanism to mediate extracellular secretion. A recent study published in Nature Cell Biology from the laboratory of Jayanta Debnath has identified components of the LC3-conjugation machinery as mediators in the selection of cargo for nonclassical secretion. Termed LC3-dependent extracellular vesicle loading and secretion (LDELS), this mechanism provides an additional link between secretory autophagy and the release of extracellular vesicles.ABBREVIATIONS: ATG, autophagy-related; BioID, proximity-dependent biotinylation; CM, conditioned medium; EV, extracellular vesicle; HNRNPK, heterogeneous nuclear ribonuclear protein K; ILVs, intralumenal vesicles; LDELS, LC3-dependent EV loading and secretion; LIR, LC3-interacting region; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MS, mass spectrometry; MVBs, multivesicular bodies; ncRNA, non-coding RNA; NSMAF/FAN, neutral sphingomyelinase activation associated factor; P-bodies, processing bodies; PE, phosphatidylethanolamine; RB1CC1/FIP200, RB1 inducible coiled-coil 1; RBP, RNA-binding protein; RNA-seq, RNA sequencing; SAFB, scaffold-attachment factor B; SILAC, stable isotope labeling of amino acids in cell culture; SMPD3/nSMase2, sphingomyelin phosphodiesterase 3; TEM, transmission electron microscopy; TMT, tandem mass tagging.
    Keywords:  Autophagy; LC3-II; macroautophagy; multivesicular bodies; secretory autophagy
    DOI:  https://doi.org/10.1080/15548627.2020.1760057
  18. Plant Mol Biol. 2020 May 14.
      KEY MESSAGE: N-glycans play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects. Asparagine-linked (Asn/N-) glycosylation is one of the most prevalent and complex protein modifications and the associated N-glycans play crucial roles on protein folding and secretion. The studies have shown that many glycoproteins hold multiple N-glycans, yet little is known about the redundancy of N-glycans on a protein. In this study, we used BRI1 to decipher the roles of N-glycans on protein secretion and function. We found that all 14 potential N-glycosylation sites on BRI1 were occupied with oligosaccharides. The elimination of single N-glycan had no obvious effect on BRI1 secretion or function except N154-glycan, which resulted in the retention of BRI1 in the endoplasmic reticulum (ER), similar to the loss of multiple highly conserved N-glycans. To misfolded bri1, the absence of N-glycans next to local structural defects enhanced the ER retention and the artificial addition of N-glycan could help the misfolded bri1-GFPs exiting from the ER, indicating that the N-glycans might serve as steric hindrance to protect the structure defects from ER recognition. We also found that the retention of misfolded bri1-9 by lectins and chaperones in the ER relied on the presence of multiple N-glycans distal to the local defects. Our findings revealed that the N-glycans might play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.
    Keywords:  Arabidopsis thaliana; BRI1; ERQC; LRR-RLKs; N-glycosylation; Protein secretion
    DOI:  https://doi.org/10.1007/s11103-020-01012-z
  19. Cell Chem Biol. 2020 Apr 21. pii: S2451-9456(20)30118-5. [Epub ahead of print]
      The BCL-2 family is composed of anti- and pro-apoptotic members that respectively protect or disrupt mitochondrial integrity. Anti-apoptotic overexpression can promote oncogenesis by trapping the BCL-2 homology 3 (BH3) "killer domains" of pro-apoptotic proteins in a surface groove, blocking apoptosis. Groove inhibitors, such as the relatively large BCL-2 drug venetoclax (868 Da), have emerged as cancer therapies. BFL-1 remains an undrugged oncogenic protein and can cause venetoclax resistance. Having identified a unique C55 residue in the BFL-1 groove, we performed a disulfide tethering screen to determine if C55 reactivity could enable smaller molecules to block BFL-1's BH3-binding functionality. We found that a disulfide-bearing N-acetyltryptophan analog (304 Da adduct) effectively targeted BFL-1 C55 and reversed BFL-1-mediated suppression of mitochondrial apoptosis. Structural analyses implicated the conserved leucine-binding pocket of BFL-1 as the interaction site, resulting in conformational remodeling. Thus, therapeutic targeting of BFL-1 may be achievable through the design of small, cysteine-reactive drugs.
    Keywords:  BCL-2 family; BFL-1/A1; BH3; anti-apoptotic; apoptosis; cancer; covalent inhibitor; disulfide tethering; mitochondria; small molecule
    DOI:  https://doi.org/10.1016/j.chembiol.2020.04.004
  20. EMBO J. 2020 May 12. e104168
      Morphogenesis of many protozoans depends on a polarized establishment of cytoskeletal structures. In malaria-causing parasites, this can be observed when a round zygote develops into an elongated motile ookinete within the mosquito stomach. This morphogenesis is mediated by the pellicle cytoskeletal structures, including the inner membrane complex (IMC) and the underlying subpellicular microtubules (SPMs). How the parasite maintains the IMC-SPM connection and establishes a dome-like structure of SPM to support cell elongation is unclear. Here, we show that palmitoylation of N-terminal cysteines of two IMC proteins (ISP1/ISP3) regulates the IMC localization of ISP1/ISP3 and zygote-to-ookinete differentiation. Palmitoylation of ISP1/ISP3 is catalyzed by an IMC-residing palmitoyl-S-acyl-transferase (PAT) DHHC2. Surprisingly, DHHC2 undergoes self-palmitoylation at C-terminal cysteines via its PAT activity, which controls DHHC2 localization in IMC after zygote formation. IMC-anchored ISP1 and ISP3 interact with microtubule component β-tubulin, serving as tethers to maintain the proper structure of SPM during zygote elongation. This study identifies the first PAT-substrate pair in malaria parasites and uncovers a protein palmitoylation cascade regulating microtubule cytoskeleton.
    Keywords:  cytoskeleton; malaria parasite; microtubule; ookinete; palmitoylation
    DOI:  https://doi.org/10.15252/embj.2019104168
  21. Cell Stem Cell. 2020 May 05. pii: S1934-5909(20)30155-7. [Epub ahead of print]
      RNA editing of adenosine to inosine (A to I) is catalyzed by ADAR1 and dramatically alters the cellular transcriptome, although its functional roles in somatic cell reprogramming are largely unexplored. Here, we show that loss of ADAR1-mediated A-to-I editing disrupts mesenchymal-to-epithelial transition (MET) during induced pluripotent stem cell (iPSC) reprogramming and impedes acquisition of induced pluripotency. Using chemical and genetic approaches, we show that absence of ADAR1-dependent RNA editing induces aberrant innate immune responses through the double-stranded RNA (dsRNA) sensor MDA5, unleashing endoplasmic reticulum (ER) stress and hindering epithelial fate acquisition. We found that A-to-I editing impedes MDA5 sensing and sequestration of dsRNAs encoding membrane proteins, which promote ER homeostasis by activating the PERK-dependent unfolded protein response pathway to consequently facilitate MET. This study therefore establishes a critical role for ADAR1 and its A-to-I editing activity during cell fate transitions and delineates a key regulatory layer underlying MET to control efficient reprogramming.
    Keywords:  ADAR1; ER stress; MET; RNA A-to-I editing; UPR; iPSC; innate immune response; pluripotency; somatic cell reprogramming; subcellular localization
    DOI:  https://doi.org/10.1016/j.stem.2020.04.016
  22. Nutrients. 2020 May 08. pii: E1351. [Epub ahead of print]12(5):
      Anticancer effects of L-ascorbic acid (Vitamin C, L-AA) have been reported in various types of cancers. L-AA intake reduces breast cancer recurrence and mortality; however, the role of L-AA in the treatment of breast cancer remains poorly understood. In this study, we investigated the effect and mechanism action of L-AA on breast cancer growth. L-AA inhibited the growth of breast cancer cells by inducing apoptotic cell death at the evaluated treatment concentrations without affecting normal cells. Moreover, L-AA induces autophagosome formation via regulation of mammalian target of rapamycin (mTOR), Beclin1, and autophagy-related genes (ATGs) and increased autophagic flux. Notably, we observed that L-AA increased p62/SQSTM1 (sequestosome 1) protein levels. Accumulation of p62 protein in cancer cells in response to stress has been reported, but its role in cancer regulation remains controversial. Here, we demonstrated that L-AA-induced p62 accumulation is related to L-AA-induced breast cancer growth inhibition. Furthermore, L-AA induced endoplasmic reticulum (ER) stress via the IRE-JNK-CHOP (inositol-requiring endonuclease-c-Jun N-terminal kinase-C/EBP homologous protein) signaling pathways, which increased the nuclear levels of p62/SQSTM1. These findings provide evidence that L-AA-induced ER stress could be crucial for p62 accumulation-dependent cell death, and L-AA can be useful in breast cancer treatment.
    Keywords:  ER stress; IRE–JNK–CHOP signaling; L-ascorbic acid; autophagy; breast cancer; p62/SQSTM1
    DOI:  https://doi.org/10.3390/nu12051351
  23. PLoS One. 2020 ;15(5): e0232755
      The quality control of intracellular proteins is achieved by degrading misfolded proteins which cannot be refolded by molecular chaperones. In eukaryotes, such degradation is handled primarily by the ubiquitin-proteasome system. However, it remained unclear whether and how protein quality control deploys various deubiquitinases. To address this question, we screened deletions or mutation of the 20 deubiquitinase genes in Saccharomyces cerevisiae and discovered that almost half of the mutations slowed the removal of misfolded proteins whereas none of the remaining mutations accelerated this process significantly. Further characterization revealed that Ubp6 maintains the level of free ubiquitin to promote the elimination of misfolded cytosolic proteins, while Ubp3 supports the degradation of misfolded cytosolic and ER luminal proteins by different mechanisms.
    DOI:  https://doi.org/10.1371/journal.pone.0232755
  24. Cell Death Differ. 2020 May 15.
      Staufen-1 (STAU1) is an RNA-binding protein that becomes highly overabundant in numerous neurodegenerative disease models, including those carrying mutations in presenilin1 (PSEN1), microtubule-associated protein tau (MAPT), huntingtin (HTT), TAR DNA-binding protein-43 gene (TARDBP), or C9orf72. We previously reported that elevations in STAU1 determine autophagy defects and its knockdown is protective in models of several neurodegenerative diseases. Additional functional consequences of STAU1 overabundance, however, have not been investigated. We studied the role of STAU1 in the chronic activation of the unfolded protein response (UPR), a common feature among neurodegenerative diseases and often directly associated with neuronal death. Here we report that STAU1 is a novel modulator of the UPR, and is required for apoptosis induced by activation of the PERK-CHOP pathway. STAU1 levels increased in response to multiple endoplasmic reticulum (ER) stressors, and exogenous expression of STAU1 was sufficient to cause apoptosis through the PERK-CHOP pathway of the UPR. Cortical neurons and skin fibroblasts derived from Stau1-/- mice showed reduced UPR and apoptosis when challenged with thapsigargin. In fibroblasts from individuals with SCA2 or with ALS-causing TDP-43 and C9ORF72 mutations, we found highly increased STAU1 and CHOP levels in basal conditions, and STAU1 knockdown restored CHOP levels to normal. Taken together, these results show that STAU1 overabundance reduces cellular resistance to ER stress and precipitates apoptosis.
    DOI:  https://doi.org/10.1038/s41418-020-0553-9
  25. Mol Biol Cell. 2020 May 13. mbcE20040269
      Endolysosomal compartments maintain cellular fitness by clearing from cells dysfunctional organelles and proteins. Modulation of their activity offers therapeutic opportunities. Quantification of cargo delivery to and/or accumulation within endolysosomes is instrumental to characterize lysosome-driven pathways at the molecular level and to monitor consequences of genetic or environmental modifications. Here we introduce LysoQuant, a deep learning approach for segmentation and classification of fluorescence images capturing cargo delivery within endolysosomes for clearance. LysoQuant is trained for unbiased and rapid recognition with human-level accuracy and the pipeline informs on a series of quantitative parameters such as endolysosome number, size, shape, position within cells and occupancy, which report on activity of lysosome-driven pathways. In our selected examples, LysoQuant successfully determines the magnitude of mechanistically distinct catabolic pathways that ensure lysosomal clearance of a model organelle, the endoplasmic reticulum (ER), and of a model protein, polymerogenic ATZ. It does so with accuracy and velocity compatible with high throughput analyses.
    DOI:  https://doi.org/10.1091/mbc.E20-04-0269
  26. Cells. 2020 May 09. pii: E1184. [Epub ahead of print]9(5):
      In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), allowing interorganellar communication and a functional integration of cellular processes. These MCS coordinate the exchange of diverse metabolites and serve as hubs for lipid synthesis and trafficking. While this of course indirectly impacts on a plethora of biological functions, including autophagy, accumulating evidence shows that MCS can also directly regulate autophagic processes. Here, we focus on the nexus between interorganellar contacts and autophagy in yeast and mammalian cells, highlighting similarities and differences. We discuss MCS connecting the ER to mitochondria or the plasma membrane, crucial for early steps of both selective and non-selective autophagy, the yeast-specific nuclear-vacuolar tethering system and its role in microautophagy, the emerging function of distinct autophagy-related proteins in organellar tethering as well as novel MCS transiently emanating from the growing phagophore and mature autophagosome.
    Keywords:  ERMES; ER–mitochondria encounter structure; MAMs; autophagy; lipophagy; membrane contact sites; mitochondria-associated membranes; mitophagy; nucleus–vacuole junction; pexophagy; piecemeal microautophagy of the nucleus
    DOI:  https://doi.org/10.3390/cells9051184
  27. Viruses. 2020 May 09. pii: E524. [Epub ahead of print]12(5):
      Zika virus (ZIKV; Flaviviridae) is a mosquito-borne flavivirus shown to cause fetal abnormalities collectively known as congenital Zika syndrome and Guillain-Barré syndrome in recent outbreaks. Currently, there is no specific treatment or vaccine available, and more effort is needed to identify cellular factors in the viral life cycle. Here, we investigated interactors of ZIKV envelope (E) protein by combining protein pull-down with mass spectrometry. We found that E interacts with the endoplasmic reticulum (ER) resident chaperone, glucose regulated protein 78 (GRP78). Although other flaviviruses are known to co-opt ER resident proteins, including GRP78, to enhance viral infectivity, the role ER proteins play during the ZIKV life cycle is yet to be elucidated. We showed that GRP78 levels increased during ZIKV infection and localised to sites coincident with ZIKV E staining. Depletion of GRP78 using specific siRNAs significantly reduced reporter-virus luciferase readings, viral protein synthesis, and viral titres. Additionally, GRP78 depletion reduced the ability of ZIKV to disrupt host cell translation and altered the localisation of viral replication factories, though there was no effect on viral RNA synthesis. In summary, we showed GRP78 is a vital host-factor during ZIKV infection, which may be involved in the coordination of viral replication factories.
    Keywords:  GRP78; Zika virus; proteomics; virus–cell interactions
    DOI:  https://doi.org/10.3390/v12050524
  28. Plant J. 2020 May 11.
      Pathogens and other adverse environmental conditions can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones. The inositol requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA which produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. This study shows that the Plantago asiatica mosaic virus (PlAMV) triple gene block 3 (TGB3) and the Turnip mosaic virus (TuMV) 6K2 proteins activate alternative transcription pathways involving the bZIP17, bZIP28, BAG7, NAC089, and NAC103 factors in Arabidopsis thaliana. Using the corresponding knock- out mutant lines, we show that bZIP17, bZIP60, BAG7 and NAC089 are factors in reducing PlAMV infection whereas bZIP28 and bZIP60 are factors in reducing TuMV infection. We propose a model in which bZIP60 and bZIP17 synergistically induce genes restricting PlAMV infection while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding TuMV-GFP infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
    Keywords:   Plantago asiatica mosaic virus ; Turnip mosaic virus ; ER-to-nucleus signaling; Protein folding capacity; Unfolded Protein Response
    DOI:  https://doi.org/10.1111/tpj.14798
  29. J Cell Biol. 2020 Jul 06. pii: e201806038. [Epub ahead of print]219(7):
      Accurate maintenance of organelle identity in the secretory pathway relies on retention and retrieval of resident proteins. In the endoplasmic reticulum (ER), secretory proteins are packaged into COPII vesicles that largely exclude ER residents and misfolded proteins by mechanisms that remain unresolved. Here we combined biochemistry and genetics with correlative light and electron microscopy (CLEM) to explore how selectivity is achieved. Our data suggest that vesicle occupancy contributes to ER retention: in the absence of abundant cargo, nonspecific bulk flow increases. We demonstrate that ER leakage is influenced by vesicle size and cargo occupancy: overexpressing an inert cargo protein or reducing vesicle size restores sorting stringency. We propose that cargo recruitment into vesicles creates a crowded lumen that drives selectivity. Retention of ER residents thus derives in part from the biophysical process of cargo enrichment into a constrained spherical membrane-bound carrier.
    DOI:  https://doi.org/10.1083/jcb.201806038
  30. Curr Opin Cell Biol. 2020 May 11. pii: S0955-0674(20)30048-X. [Epub ahead of print]65 96-102
      Misfolded and mistargeted proteins in the early secretory pathway present significant risks to the cell. A diverse and integrated network of quality control pathways protects the cell from these threats. We focus on the discovery of new mechanisms that contribute to this protective network. Biochemical and structural advances in endoplasmic reticulum targeting fidelity, and in the redistribution of mistargeted substrates are discussed. We further review new discoveries in quality control at the inner nuclear membrane in the context of orphaned subunits. We consider developments in our understanding of cargo selection for endoplasmic reticulum export. Conflicting data on quality control by cargo receptor proteins are discussed and we look to important future questions for the field.
    Keywords:  Endoplasmic reticulum; Protein quality control
    DOI:  https://doi.org/10.1016/j.ceb.2020.04.002
  31. Trends Cell Biol. 2020 Jun;pii: S0962-8924(20)30055-6. [Epub ahead of print]30(6): 428-439
      Eukaryotic cells must accurately monitor the integrity of the mitochondrial network to overcome environmental insults and respond to physiological cues. The mitochondrial unfolded protein response (UPRmt) is a mitochondrial-to-nuclear signaling pathway that maintains mitochondrial proteostasis, mediates signaling between tissues, and regulates organismal aging. Aberrant UPRmt signaling is associated with a wide spectrum of disorders, including congenital diseases as well as cancers and neurodegenerative diseases. Here, we review recent research into the mechanisms underlying UPRmt signaling in Caenorhabditis elegans and discuss emerging connections between the UPRmt signaling and a translational regulation program called the 'integrated stress response'. Further study of the UPRmt will potentially enable development of new therapeutic strategies for inherited metabolic disorders and diseases of aging.
    Keywords:  integrated stress response; mitochondria; mitochondrial unfolded protein response; stress signaling
    DOI:  https://doi.org/10.1016/j.tcb.2020.03.001
  32. Nat Cell Biol. 2020 May 11.
      The linear ubiquitin chain assembly complex (LUBAC), which consists of HOIP, SHARPIN and HOIL-1L, promotes NF-κB activation and protects against cell death by generating linear ubiquitin chains. LUBAC contains two RING-IBR-RING (RBR) ubiquitin ligases (E3), and the HOIP RBR is responsible for catalysing linear ubiquitination. We found that HOIL-1L RBR plays a crucial role in regulating LUBAC. HOIL-1L RBR conjugates monoubiquitin onto all LUBAC subunits, followed by HOIP-mediated conjugation of linear chains onto monoubiquitin, and these linear chains attenuate the functions of LUBAC. The introduction of E3-defective HOIL-1L mutants into cells augmented linear ubiquitination, which protected the cells against Salmonella infection and cured dermatitis caused by reduced LUBAC levels due to SHARPIN loss. Our results reveal a regulatory mode of E3 ligases in which the accessory E3 in LUBAC downregulates the main E3 by providing preferred substrates for autolinear ubiquitination. Thus, inhibition of HOIL-1L E3 represents a promising strategy for treating severe infections or immunodeficiency.
    DOI:  https://doi.org/10.1038/s41556-020-0517-9
  33. Sci Signal. 2020 May 12. pii: eaay7066. [Epub ahead of print]13(631):
      Receptor-interacting protein kinase 1 (RIPK1) is a serine/threonine kinase that dictates whether cells survive or die in response to the cytokine tumor necrosis factor (TNF) and other inflammatory stimuli. The activity of RIPK1 is tightly controlled by multiple posttranslational modification mechanisms, including ubiquitination and phosphorylation. Here, we report that sensitivity to TNF-induced, RIPK1-dependent cell death was tunable by the pH environment. We found that an acidic extracellular pH, which led to a concomitant decrease in intracellular pH, impaired the kinase activation of RIPK1 and autophosphorylation at Ser166 Consequently, formation of the cytosolic death-inducing complex II and subsequent RIPK1-dependent necroptosis and apoptosis were inhibited. By contrast, low pH did not affect the formation of membrane-anchored TNFR1-containing signaling complex (complex I), RIPK1 ubiquitination, and NF-κB activation. TNF-induced cell death in Ripk1 -/- cells was not sensitive to pH changes. Furthermore, mutation of the conserved His151 abolished the pH dependence of RIPK1 activation, suggesting that this histidine residue functions as a proton acceptor to modulate RIPK1 activity in response to pH changes. These results revealed an unexpected environmental factor that controls the death-inducing activity of RIPK1.
    DOI:  https://doi.org/10.1126/scisignal.aay7066
  34. Biochemistry. 2020 May 13.
      The E3 ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) plays a critical role in regulating the ubiquitin-dependent degradation of misfolded proteins. CHIP mediates the ubiquitination of the alpha-amino terminus of substrates with the E2 Ube2w and facilitates the ubiquitination of lysine residues with the E2 UbcH5. While it is known that Ube2w directly interacts with disordered regions at the N-terminus of its substrates, it is unclear how CHIP and UbcH5 mediate substrate lysine selection. Here, we have decoupled the contributions of the E2, UbcH5, and the E3, CHIP, in ubiquitin transfer. We show that UbcH5 selects substrate lysine residues independent of CHIP, and CHIP participates in lysine selection by fine-tuning the subset of substrate lysines that are ubiquitinated. We also identify lysine 128 near the C-terminus of UbcH5 as a critical residue for efficient ubiquitin transfer by UbcH5 in both the presence and absence of CHIP. Together, these data demonstrate an important role for UbcH5/substrate interactions in mediating efficient ubiquitin transfer by the CHIP/UbcH5 complex.
    DOI:  https://doi.org/10.1021/acs.biochem.0c00084
  35. EMBO J. 2020 May 12. e103697
      Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat-PCH) in mouse pre-implantation embryos. Remarkably, pat-PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2-modified CBX2-containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3-specific chaperone DAXX to pat-PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis-segregation. Complementation assays show that DAXX-mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
    Keywords:  PRC1; SUMOylation; chromosome stability; constitutive heterochromatin; histone variant
    DOI:  https://doi.org/10.15252/embj.2019103697
  36. Cells. 2020 May 12. pii: E1202. [Epub ahead of print]9(5):
      Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
    Keywords:  carcinogenesis; heat shock factor; heat shock response; proteotoxic stress; transcription
    DOI:  https://doi.org/10.3390/cells9051202