J Biol Chem. 2020 Jul 03. pii: S0021-9258(17)50332-4. [Epub ahead of print]295(27):
9105-9120
Asami Nagata,
Fumiko Itoh,
Ayaka Sasho,
Kaho Sugita,
Riko Suzuki,
Hiroki Hinata,
Yuta Shimoda,
Eri Suzuki,
Yuki Maemoto,
Toshihiko Inagawa,
Yuuta Fujikawa,
Eri Ikeda,
Chiaki Fujii,
Hideshi Inoue.
Modification of the transforming growth factor β (TGF-β) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-β signaling, suggesting that this mode of regulation of TGF-β signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-β signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-βRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-β signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-β signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-β/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-β/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-β/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-β signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.
Keywords: DAF-7; SMAD transcription factor; Ubh1; cell signaling; deubiquitylation (deubiquitination); hypoxia; lung cancer; lung carcinoma; post-translational modification (PTM); transforming growth factor β (TGF-β); ubh-1/UCH-L1; ubiquitin C-terminal hydrolase-L1 (UCH-L1)