bims-proteo Biomed News
on Proteostasis
Issue of 2022‒03‒27
34 papers selected by
Eric Chevet
INSERM


  1. Nat Commun. 2022 Mar 24. 13(1): 1587
      The unfolded protein response (UPR) maintains homeostasis of the endoplasmic reticulum (ER). Residing in the ER membrane, the UPR mediator Ire1 deploys its cytoplasmic kinase-endoribonuclease domain to activate the key UPR transcription factor Xbp1 through non-conventional splicing of Xbp1 mRNA. Ire1 also degrades diverse ER-targeted mRNAs through regulated Ire1-dependent decay (RIDD), but how it spares Xbp1 mRNA from this decay is unknown. Here, we identify binding sites for the RNA-binding protein Pumilio in the 3'UTR Drosophila Xbp1. In the developing Drosophila eye, Pumilio binds both the Xbp1unspliced and Xbp1spliced mRNAs, but only Xbp1spliced is stabilized by Pumilio. Furthermore, Pumilio displays Ire1 kinase-dependent phosphorylation during ER stress, which is required for its stabilization of Xbp1spliced. hIRE1 can phosphorylate Pumilio directly, and phosphorylated Pumilio protects Xbp1spliced mRNA against RIDD. Thus, Ire1-mediated phosphorylation enables Pumilio to shield Xbp1spliced from RIDD. These results uncover an unexpected regulatory link between an RNA-binding protein and the UPR.
    DOI:  https://doi.org/10.1038/s41467-022-29105-x
  2. Mol Cell. 2022 Mar 15. pii: S1097-2765(22)00209-X. [Epub ahead of print]
      AGO/miRNA-mediated gene silencing and ubiquitin-mediated protein quality control represent two fundamental mechanisms that control proper gene expression. Here, we unexpectedly discover that fly and human AGO proteins, which are key components in the miRNA pathway, undergo lipid-mediated phase separation and condense into RNP granules on the endoplasmic reticulum (ER) membrane to control protein production. Phase separation on the ER is mediated by electrostatic interactions between a conserved lipid-binding motif within the AGOs and the lipid PI(4,5)P2. The ER-localized AGO condensates recruit the E3 ubiquitin ligase Ltn1 to catalyze nascent-peptide ubiquitination and coordinate with the VCP-Ufd1-Npl4 complex to process unwanted protein products for proteasomal degradation. Collectively, our study provides insight into the understanding of post-transcription-translation coupling controlled by AGOs via lipid-mediated phase separation.
    Keywords:  AGO1; Drosophila; ER; lipid binding; nascent peptide
    DOI:  https://doi.org/10.1016/j.molcel.2022.02.035
  3. Front Cell Dev Biol. 2022 ;10 743287
      Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
    Keywords:  ERAD (ER associated protein degradation); HERPUD1; MCSs; lysosomal function; organelle network; proteostais; ubiquitin-like (UBL) domain
    DOI:  https://doi.org/10.3389/fcell.2022.743287
  4. Mol Cell. 2022 Mar 11. pii: S1097-2765(22)00167-8. [Epub ahead of print]
      Eukaryotic cells possess hundreds of protein complexes that contain multiple subunits and must be formed at the correct time and place during development. Despite specific assembly pathways, cells frequently encounter complexes with missing or aberrant subunits that can disrupt important signaling events. Cells, therefore, employ several ubiquitin-dependent quality control pathways that can prevent, correct, or degrade flawed complexes. In this review, we will discuss our emerging understanding of such quality control of protein complex composition.
    Keywords:  aneuploidy; dimerization quality control; orphan quality control; proteasome; quality control; ubiquitin; ubiquitylation
    DOI:  https://doi.org/10.1016/j.molcel.2022.02.029
  5. Cell Rep. 2022 Mar 22. pii: S2211-1247(22)00221-2. [Epub ahead of print]38(12): 110488
      The accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR), which acts through various mechanisms to reduce ER stress. While the UPR has been well studied for its effects on the ER, its impact on the Golgi is less understood. The Golgi complex receives transport vesicles from the endosome through two types of tethering factors: long coiled-coil golgin and the multisubunit Golgi-associated retrograde protein (GARP) complex. Here, we report that ER stress increases the phosphorylation of golgin Imh1 to maintain the GARP-mediated recycling of the SNAREs Snc1 and Tlg1. We also identify a specific function of the Golgi affected by ER stress and elucidate a homeostatic response to restore this function, which involves both an Ire1-dependent and a MAP kinase Slt2/ERK2-dependent mechanism. Furthermore, our findings advance a general understanding of how two different types of tethers act cooperatively to mediate a transport pathway.
    Keywords:  ADP-ribosylation factor; Arl1; GTPase; Golgi; MAP kinase; SNARE; Slt2/ERK2; vesicle trafficking
    DOI:  https://doi.org/10.1016/j.celrep.2022.110488
  6. Annu Rev Biochem. 2022 Feb 23.
      Methods to direct the degradation of protein targets with proximity-inducing molecules that coopt the cellular degradation machinery are advancing in leaps and bounds, and diverse modalities are emerging. The most used and well-studied approach is to hijack E3 ligases of the ubiquitin-proteasome system. E3 ligases use specific molecular recognition to determine which proteins in the cell are ubiquitinated and degraded. This review focuses on the structural determinants of E3 ligase recruitment of natural substrates and neo-substrates obtained through monovalent molecular glues and bivalent proteolysis-targeting chimeras. We use structures to illustrate the different types of substrate recognition and assess the basis for neo-protein-protein interactions in ternary complex structures. The emerging structural and mechanistic complexity is reflective of the diverse physiological roles of protein ubiquitination. This molecular insight is also guiding the application of structure-based design approaches to the development of new and existing degraders as chemical tools and therapeutics. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-biochem-032620-104421
  7. Biochem Soc Trans. 2022 Mar 21. pii: BST20210862. [Epub ahead of print]
      Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
    Keywords:  ageing; neurodegeneration; protein aggregation; proteostasis
    DOI:  https://doi.org/10.1042/BST20210862
  8. Biochem J. 2022 Mar 24. pii: BCJ20220055. [Epub ahead of print]
      α1-antitrypsin (AAT) is a serine protease inhibitor synthesized in hepatocytes and protects the lung from damage by neutrophil elastase. AAT gene mutations result in AAT deficiency (AATD), which leads to lung and liver diseases. The AAT Z variant forms polymer within the endoplasmic reticulum (ER) of hepatocytes and results in reduction of AAT secretion and severe disease. Previous studies demonstrated a secretion defect of AAT in LMAN1 deficient cells, and mild decreases in AAT levels in male LMAN1 and MCFD2 deficient mice. LMAN1 is a transmembrane lectin that forms a complex with a small soluble protein MCFD2. The LMAN1-MCFD2 protein complex cycles between the ER and the Golgi. Here we report that LMAN1 and MCFD2 knockout (KO) HepG2 and HEK293T cells display reduced AAT secretion and elevated intracellular AAT levels due to a delayed ER-to-Golgi transport of AAT. Secretion defects in KO cells were rescued by wild-type LMAN1 or MCFD2, but not by mutant proteins. Elimination of the second glycosylation site of AAT abolished LMAN1 dependent secretion. Co-immunoprecipitation experiment in MCFD2 KO cells suggested that AAT interaction with LMAN1 is independent of MCFD2. Furthermore, our results suggest that secretion of the Z variant, both monomers and polymers, is also LMAN1-dependent. Results provide direct evidence supporting that the LMAN1-MCFD2 complex is a cargo receptor for the ER-to-Golgi transport of AAT and that interactions of LMAN1 with an N-glycan of AAT is critical for this process. These results have implications in production of recombinant AAT and in developing treatments for AATD patients.
    Keywords:  cargo proteins; cellular secretion; endoplasmic reticulum; intracellular transport; serpin
    DOI:  https://doi.org/10.1042/BCJ20220055
  9. Plant Mol Biol. 2022 Mar 19.
      KEY MESSAGE: TaHsfA6b-4D relocalizes intracellularly upon heat stress and play a significant role in linking the heat stress response to unfolded-protein response so as to maintain cellular homeostasis. Heat stress transcription factors (Hsfs) play a crucial role in protecting the plants against heat stress (HS). In case of wheat, TaHsfA6b-4D (earlier known as TaHsfA2d) has been identified as a seed preferential transcription factor and its role has been shown in various abiotic stresses such as heat, salt and drought stress. In the present study, a homeologue of TaHsfA6b gene (TaHsfA6b-4A) was identified and was found to be transcriptionally inactive but it localized to the nucleus. Interestingly, TaHsfA6b-4D localized to the endoplasmic reticulum-Golgi complex and peroxisomes under non-stress conditions, but was observed to accumulate in the nucleus upon HS. The expression of TaHsfA6b-4D was upregulated by dithiothreitol (DTT), which is a known ER stress inducer. Consistent with this, Arabidopsis transgenic plants overexpressing TaHsfA6b-4D performed better on DTT containing media, which further corroborated with the increased expression of ER stress marker genes in these transgenic plants in comparison to the wild type plants. Thus, these studies together suggest that TaHsfA6b-4D may relocalize intracellularly upon heat stress and may play a significant role in linking the unfolded-protein response with heat stress response so as to maintain protein homeostasis inside the cell under heat stress.
    Keywords:  ER stress; Heat stress (HS); Heat stress response (HSR); Homeologue; Hsf; Unfolded protein response (UPR); Wheat
    DOI:  https://doi.org/10.1007/s11103-022-01252-1
  10. Sci Adv. 2022 Mar 25. 8(12): eabk2022
      Stress granules (SGs) are formed in the cytosol as an acute response to environmental cues and activation of the integrated stress response (ISR), a central signaling pathway controlling protein synthesis. Using chronic virus infection as stress model, we previously uncovered a unique temporal control of the ISR resulting in recurrent phases of SG assembly and disassembly. Here, we elucidate the molecular network generating this fluctuating stress response by integrating quantitative experiments with mathematical modeling and find that the ISR operates as a stochastic switch. Key elements controlling this switch are the cooperative activation of the stress-sensing kinase PKR, the ultrasensitive response of SG formation to the phosphorylation of the translation initiation factor eIF2α, and negative feedback via GADD34, a stress-induced subunit of protein phosphatase 1. We identify GADD34 messenger RNA levels as the molecular memory of the ISR that plays a central role in cell adaptation to acute and chronic stress.
    DOI:  https://doi.org/10.1126/sciadv.abk2022
  11. Trends Endocrinol Metab. 2022 Mar 22. pii: S1043-2760(22)00039-X. [Epub ahead of print]
      A long proportion of the population is resilient to the negative consequences of stress. Glucocorticoids resulting from endocrine responses to stress are essential adaptive mediators, but also drive alterations to brain function, negatively impacting neuronal connectivity, synaptic plasticity, and memory-related processes. Recent evidence has indicated that organelle function and cellular stress responses are relevant determinant of vulnerability and resistance to environmental stress. At the molecular level, a fundamental mechanism of cellular stress adaptation is the maintenance of proteostasis, which also have key roles in sustaining basal neuronal function. Here, we discuss recent evidence suggesting that proteostasis unbalance at the level of the endoplasmic reticulum, the main site for protein folding in the cell, represents a possible mechanistic link between individuals and cellular stress.
    Keywords:  cellular stress; hypothalamic–pituitary–adrenal axis; resilience; stress; unfolded protein response
    DOI:  https://doi.org/10.1016/j.tem.2022.02.003
  12. Dig Dis Sci. 2022 Mar 22.
      Previous investigations have increased the knowledge about the pathological processes of inflammatory bowel diseases. Besides the complex organization of immune reactions, the mucosal epithelial lining has been recognized as a crucial regulator in the commencement and persistence of intestinal inflammation. As the intestinal epithelium is exposed to various environmental factors, the intestinal epithelial cells are confronted with diverse cellular stress conditions. In eukaryotic cells, an imbalance in the endoplasmic reticulum (ER) might cause aggregation of unfolded or misfolded proteins in the lumen of ER, a condition known as endoplasmic reticulum stress. This cellular mechanism stimulates the unfolded protein response (UPR), which elevates the potential of the endoplasmic reticulum protein folding, improves protein production and its maturation, and also stimulates ER-associated protein degradation. Current analyses reported that in the epithelium, the ER stress might cause the pathogenesis of inflammatory bowel disease that affects the synthesis of protein, inducing the apoptosis of the epithelial cell and stimulating the proinflammatory reactions in the gut. There have been significant efforts to develop small molecules or molecular chaperones that will be potent in ameliorating ER stress. The restoration of UPR balance in the endoplasmic reticulum via pharmacological intervention might be a novel therapeutic approach for the treatment of inflammatory bowel diseases (IBDs). This review provides novel insights into the role of chemical chaperone UPR modulators to modify ER stress levels. We further discuss the future directions/challenges in the development of therapeutic strategies for IBDs by targeting the ER stress. Figure depicting the role of endoplasmic reticulum stress-mediated inflammatory bowel disease and the therapeutic role of endoplasmic reticulum stress inhibitors in alleviating the diseased condition.
    Keywords:  ER stress inhibitors; Endoplasmic reticulum stress; Inflammatory bowel disease; Therapy; Unfolded protein response
    DOI:  https://doi.org/10.1007/s10620-022-07467-y
  13. Sci Rep. 2022 Mar 23. 12(1): 5036
      The Rho GTPase activating protein Deleted in Liver Cancer 1 (DLC1) is frequently downregulated through genetic and epigenetic mechanisms in various malignancies, leading to aberrant Rho GTPase signaling and thus facilitating cancer progression. Here we show that in breast cancer cells, dysregulation of DLC1 expression occurs at the protein level through rapid degradation via the ubiquitin-proteasome system. Using mass spectrometry, we identify two novel DLC1 interaction partners, the ubiquitin-ligase HECTD1 and the deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7). While DLC1 protein expression was rapidly downregulated upon pharmacological inhibition of USP7, siRNA-mediated knockdown of HECTD1 increased DLC1 protein levels and impaired its degradation. Immunofluorescence microscopy analyses revealed that the modulation of HECTD1 levels and USP7 activity altered DLC1 abundance at focal adhesions, its primary site of action. Thus, we propose opposing regulatory mechanisms of DLC1 protein homeostasis by USP7 and HECTD1, which could open up strategies to counteract downregulation and restore DLC1 expression in cancer.
    DOI:  https://doi.org/10.1038/s41598-022-08844-3
  14. Chem Biol Drug Des. 2022 Mar 24.
      Cancer cells are dependent on protein quality-control mechanisms, including protein chaperones, the ubiquitin proteasome system (UPS), and autophagy. The p62 receptor is a classical, ubiquitously-expressed receptor, involved in many signal transduction pathways. Upregulation and/or reduced degradation of p62 have been implicated in tumor formation and resistance to therapy. PTX80 is a first-in-class novel inhibitor of protein degradation, developed by Pi Therapeutics for treatment of cancer. PTX80 binds to p62, inducing a decrease in soluble p62 and formation of insoluble p62 aggregates, as well as failure of polyubiquitinated proteins to colocalize with p62. PTX80 induces proteotoxic stress and activation of unfolded protein response (UPR), which, in turn, leads to apoptosis. Targeting p62, which is a major protein degradation hub, may serve as a novel and beneficial strategy for treatment of cancer.
    Keywords:  Animal model of cancer; Cell surface receptor drug target; In vitro model of cancer; Receptors; Xenograft model
    DOI:  https://doi.org/10.1111/cbdd.14046
  15. J Am Chem Soc. 2022 Mar 21.
      Targeted protein degradation (TPD) by PROTACs is a promising strategy to control disease-causing protein levels within the cell. While TPD is emerging as an innovative drug discovery paradigm, there are currently only a limited number of E3 ligase:ligand pairs that are employed to induce protein degradation. Herein, we report a novel approach to induce protein degradation by hijacking a methyl reader:E3 ligase complex. L3MBTL3 is a methyl-lysine reader protein that binds to the Cul4DCAF5 E3 ligase complex and targets methylated proteins for proteasomal degradation. By co-opting this natural mechanism, we report the design and biological evaluation of L3MBTL3-recruiting PROTACs and demonstrate nuclear-specific degradation of FKBP12 and BRD2. We envision this as a generalizable approach to utilize other reader protein-associated E3 ligase complexes in PROTAC design to expand the E3 ligase toolbox and explore the full potential of TPD.
    DOI:  https://doi.org/10.1021/jacs.2c00874
  16. Neuropathol Appl Neurobiol. 2022 Mar 26. e12816
      AIM: Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by Survival of Motor Neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the Unfolded Protein Response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients.METHODS: We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection.
    RESULTS: We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection.
    CONCLUSIONS: We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.
    Keywords:  IRE1α; Neuroprotection; SMN; Spinal Muscular Atrophy; Unfolded Protein Response; XBP1
    DOI:  https://doi.org/10.1111/nan.12816
  17. Nat Struct Mol Biol. 2022 Mar 24.
      Vertebrates use the mannose 6-phosphate (M6P)-recognition system to deliver lysosomal hydrolases to lysosomes. Key to this pathway is N-acetylglucosamine (GlcNAc)-1-phosphotransferase (PTase) that selectively adds GlcNAc-phosphate (P) to mannose residues of hydrolases. Human PTase is an α2β2γ2 heterohexamer with a catalytic core and several peripheral domains that recognize and bind substrates. Here we report a cryo-EM structure of the catalytic core of human PTase and the identification of a hockey stick-like motif that controls activation of the enzyme. Movement of this motif out of the catalytic pocket is associated with a rearrangement of part of the peripheral domains that unblocks hydrolase glycan access to the catalytic site, thereby activating PTase. We propose that PTase fluctuates between inactive and active states in solution, and selective substrate binding of a lysosomal hydrolase through its protein-binding determinant to PTase locks the enzyme in the active state to permit glycan phosphorylation. This mechanism would help ensure that only N-linked glycans of lysosomal enzymes are phosphorylated.
    DOI:  https://doi.org/10.1038/s41594-022-00748-0
  18. Nat Commun. 2022 Mar 24. 13(1): 1582
      Mitochondrial fission is critically important for controlling mitochondrial morphology, function, quality and transport. Drp1 is the master regulator driving mitochondrial fission, but exactly how Drp1 is regulated remains unclear. Here, we identified Drosophila Clueless and its mammalian orthologue CLUH as key regulators of Drp1. As with loss of drp1, depletion of clueless or CLUH results in mitochondrial elongation, while as with drp1 overexpression, clueless or CLUH overexpression leads to mitochondrial fragmentation. Importantly, drp1 overexpression rescues adult lethality, tissue disintegration and mitochondrial defects of clueless null mutants in Drosophila. Mechanistically, Clueless and CLUH promote recruitment of Drp1 to mitochondria from the cytosol. This involves CLUH binding to mRNAs encoding Drp1 receptors MiD49 and Mff, and regulation of their translation. Our findings identify a crucial role of Clueless and CLUH in controlling mitochondrial fission through regulation of Drp1.
    DOI:  https://doi.org/10.1038/s41467-022-29071-4
  19. J Biol Chem. 2022 Mar 17. pii: S0021-9258(22)00280-0. [Epub ahead of print] 101840
      Post-translational addition of a SUMO moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria, are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor TrkB facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen-glucose deprivation (OGD) as an in vitro model for ischemia, we show that BDNF-TrkB signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission post-ischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.
    Keywords:  ischemia; neurotrophin; post‐translational modification (PTM); sumoylation; synaptic plasticity
    DOI:  https://doi.org/10.1016/j.jbc.2022.101840
  20. EMBO J. 2022 Mar 22. e109823
      Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
    Keywords:  cancer; protein synthesis; translation and protein quality; translation inhibitors; translational control
    DOI:  https://doi.org/10.15252/embj.2021109823
  21. Hum Mol Genet. 2022 Mar 21. pii: ddac064. [Epub ahead of print]
      The mitochondrial kinase PTEN-induced kinase 1 (PINK1) and cytosolic ubiquitin ligase (E3) Parkin/PRKN are involved in mitochondrial quality control responses. PINK1 phosphorylates ubiquitin and the Parkin ubiquitin-like (Ubl) domain at serine 65 and promotes Parkin activation and translocation to damaged mitochondria. Upon Parkin activation, the Ubl domain is ubiquitinated at lysine (K) 27 and K48 residues. However, contribution of K27/K48 ubiquitination towards Parkin activity remains unclear. In this study, ubiquitination of K56 (corresponding to K27 in the human), K77 (K48 in the human), or both, was blocked by generating Drosophila Parkin (dParkin) mutants to examine the effects of Parkin Ubl domain ubiquitination on Parkin activation in Drosophila. The dParkin, in which K56 was replaced with arginine (dParkin K56R), rescued pupal lethality in flies by co-expression with PINK1, whereas dParkin K77R could not. The dParkin K56R exhibited reduced abilities of mitochondrial fragmentation and motility arrest, which are mediated by degrading Parkin E3 substrates Mitofusin and Miro, respectively. Pathogenic dParkin K56N, unlike dParkin K56R, destabilized the protein, suggesting that not only was dParkin K56N non-ubiquitin-modified at K56 but also the structure of the Ubl domain for activation was largely affected. Ubiquitin attached to K27 of the Ubl domain during PINK1-mediated Parkin activation was likely to be phosphorylated because human Parkin K27R weakened Parkin self-binding and activation in trans. Therefore, our findings suggest a new mechanism of Parkin activation, where an activation complex is formed through phospho-ubiquitin attachment on the K27 residue of the Parkin Ubl domain.
    DOI:  https://doi.org/10.1093/hmg/ddac064
  22. Nat Commun. 2022 Mar 24. 13(1): 1594
      Ubiquitin ligases control the degradation of core clock proteins to govern the speed and resetting properties of the circadian pacemaker. However, few studies have addressed their potential to regulate other cellular events within clock neurons beyond clock protein turnover. Here, we report that the ubiquitin ligase, UBR4/POE, strengthens the central pacemaker by facilitating neuropeptide trafficking in clock neurons and promoting network synchrony. Ubr4-deficient mice are resistant to jetlag, whereas poe knockdown flies are prone to arrhythmicity, behaviors reflective of the reduced axonal trafficking of circadian neuropeptides. At the cellular level, Ubr4 ablation impairs the export of secreted proteins from the Golgi apparatus by reducing the expression of Coronin 7, which is required for budding of Golgi-derived transport vesicles. In summary, UBR4/POE fulfills a conserved and unexpected role in the vesicular trafficking of neuropeptides, a function that has important implications for circadian clock synchrony and circuit-level signal processing.
    DOI:  https://doi.org/10.1038/s41467-022-29244-1
  23. Sci Adv. 2022 Mar 25. 8(12): eabm6063
      The mechanisms underlying memory loss associated with Alzheimer's disease and related dementias (ADRD) remain unclear, and no effective treatments exist. Fundamental studies have shown that a set of transcriptional regulatory proteins of the nuclear receptor 4a (Nr4a) family serve as molecular switches for long-term memory. Here, we show that Nr4a proteins regulate the transcription of genes encoding chaperones that localize to the endoplasmic reticulum (ER). These chaperones fold and traffic plasticity-related proteins to the cell surface during long-lasting forms of synaptic plasticity and memory. Dysregulation of Nr4a transcription factors and ER chaperones is linked to ADRD, and overexpressing Nr4a1 or the chaperone Hspa5 ameliorates long-term memory deficits in a tau-based mouse model of ADRD, pointing toward innovative therapeutic approaches for treating memory loss. Our findings establish a unique molecular concept underlying long-term memory and provide insights into the mechanistic basis of cognitive deficits in dementia.
    DOI:  https://doi.org/10.1126/sciadv.abm6063
  24. Autophagy. 2022 Mar 20.
      A coding allele of ATG16L1 that increases the risk of Crohn disease (T300A; rs2241880) impairs the interaction between the C-terminal WD40 domain (WDD) and proteins containing a WDD-binding motif, thus specifically inhibiting the unconventional autophagic activities of ATG16L1. In a recent publication we described a novel atypical role of ATG16L1 in the regulation of IL10R (interleukin 10 receptor) trafficking and signaling, an activity that involves direct interaction between the WDD and a target motif present in IL10RB (interleukin 10 receptor subunit beta). Here we show that, unexpectedly, neither the ability of ATG16L1 to interact with IL10RB nor its role in supporting IL10 signaling are altered by the T300A mutation. These results indicate that the ATG16L1T300A allele selectively impairs the interaction between the WDD and a subset of WDD-binding motif versions, suggesting that only a fraction of the unconventional activities mediated by ATG16L1 are required to prevent Crohn disease.
    Keywords:  ATG16L1; Crohn disease; T300A allele; WD40 domain; cytokine signaling; unconventional autophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2054241
  25. Autophagy. 2022 Mar 20.
      Macroautophagy/autophagy is a conserved cellular mechanism to degrade unneeded cytoplasmic proteins and organelles to recycle their components, and it is critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Whereas autophagy is essential for early development of embryos, no information exists regarding its functions during the transition from naive-to-primed pluripotency. Here, by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we find that dynamic changes in ATG7-dependent autophagy are critical for the naive-to-primed transition, and are also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that NANOG acts as a barrier to prevent pluripotency transition, and autophagy-dependent NANOG degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy receptor protein SQSTM1/p62 translocated into the nucleus during the pluripotency transition period and is preferentially associated with K63 ubiquitinated NANOG for selective protein degradation. In vivo, loss of autophagy by ATG7 depletion disrupts peri-implantation development and causes increased chromatin association of NANOG, which affects neuronal differentiation by competitively binding to OTX2-specific neuroectodermal development-associated regions. Taken together, our findings reveal that autophagy-dependent degradation of NANOG plays a critical role in regulating exit from the naive state and marks distinct cell fate allocation during lineage specification.
    Keywords:  ATG7; NANOG; autophagy; naive-to-primed transition; peri-implantation development
    DOI:  https://doi.org/10.1080/15548627.2022.2055285
  26. FEBS J. 2022 Mar 25.
      The pathology of age-related cataract (ARC) mainly involves the misfolding and aggregation of proteins, especially oxidative damage repair proteins, in the lens, induced by ultraviolet-B (UVB). MSH3, as a key member of the mismatch repair (MMR) family, primarily maintains genome stability. However, the function of MSH3 and the mechanism by which cells maintain MSH3 proteostasis during cataractogenesis remains unknown. In this study, the protein expression levels of MSH3 were found to be attenuated in ARC specimens and SRA01/04 cells under UVB exposure. The ectopic expression of MSH3 notably impeded UVB-induced apoptosis, while the knockdown of MSH3 promoted apoptosis. Protein half-life assay revealed that UVB irradiation accelerated the decline of MSH3 by ubiquitination and degradation. Subsequently, we found that E3 ubiquitin ligase synoviolin (SYVN1) interacted with MSH3 and promoted its ubiquitination and degradation. Of note, the expression and function of SYVN1 were contrary to those of MSH3 and SYVN1 regulated MSH3 protein degradation via the ubiquitin-proteasome pathway (UPP) and the autophagy-lysosome pathway (ALP). Based on these findings, we propose a mechanism for ARC pathogenesis that involves SYVN1-mediated degradation of MSH3 via UPP and ALP, and suggest that interventions targeting SYVN1 might be a potential therapeutic strategy for ARC.
    Keywords:  MSH3; SYVN1; age-related cataract; oxidative damage repair; protein degradation
    DOI:  https://doi.org/10.1111/febs.16447
  27. Cell Rep. 2022 Mar 22. pii: S2211-1247(22)00298-4. [Epub ahead of print]38(12): 110554
      Cdc48 (p97/VCP) is a AAA-ATPase that can extract ubiquitinated proteins from their binding partners and can cooperate with the proteasome for their degradation. A fission yeast cdc48 mutant (cdc48-353) shows low levels of the cohesin protease, separase, and pronounced chromosome segregation defects in mitosis. Separase initiates chromosome segregation when its binding partner securin is ubiquitinated and degraded. The low separase levels in the cdc48-353 mutant have been attributed to a failure to extract ubiquitinated securin from separase, resulting in co-degradation of separase along with securin. If true, Cdc48 would be important in mitosis. In contrast, we show here that low separase levels in the cdc48-353 mutant are independent of mitosis. Moreover, we find no evidence of enhanced separase degradation in the mutant. Instead, we suggest that the cdc48-353 mutant uncovers specific requirements for separase translation. Our results highlight a need to better understand how this key mitotic enzyme is synthesized.
    Keywords:  CP: Cell Biology; Cdc48; TORC1; Ufd1; Ufd2; chromosome segregation; mitosis; securin; separase; ubiquitination
    DOI:  https://doi.org/10.1016/j.celrep.2022.110554
  28. Nat Cell Biol. 2022 Mar 24.
      Autolysosomes contain components from autophagosomes and lysosomes. The contents inside the autolysosomal lumen are degraded during autophagy, while the fate of autophagosomal components on the autolysosomal membrane remains unknown. Here we report that the autophagosomal membrane components are not degraded, but recycled from autolysosomes through a process coined in this study as autophagosomal components recycling (ACR). We further identified a multiprotein complex composed of SNX4, SNX5 and SNX17 essential for ACR, which we termed 'recycler'. In this, SNX4 and SNX5 form a heterodimer that recognizes autophagosomal membrane proteins and is required for generating membrane curvature on autolysosomes, both via their BAR domains, to mediate the cargo sorting process. SNX17 interacts with both the dynein-dynactin complex and the SNX4-SNX5 dimer to facilitate the retrieval of autophagosomal membrane components. Our discovery of ACR and identification of the recycler reveal an important retrieval and recycling pathway on autolysosomes.
    DOI:  https://doi.org/10.1038/s41556-022-00861-8
  29. Mol Cell. 2022 Mar 12. pii: S1097-2765(22)00205-2. [Epub ahead of print]
      Innate immune responses induce hundreds of interferon-stimulated genes (ISGs). Viperin, a member of the radical S-adenosyl methionine (SAM) superfamily of enzymes, is the product of one such ISG that restricts the replication of a broad spectrum of viruses. Here, we report a previously unknown antiviral mechanism in which viperin activates a ribosome collision-dependent pathway that inhibits both cellular and viral RNA translation. We found that the radical SAM activity of viperin is required for translation inhibition and that this is mediated by viperin's enzymatic product, 3'-deoxy-3',4'-didehydro-CTP (ddhCTP). Viperin triggers ribosome collisions and activates the MAPKKK ZAK pathway that in turn activates the GCN2 arm of the integrated stress response pathway to inhibit translation. The study illustrates the importance of translational repression in the antiviral response and identifies viperin as a translation regulator in innate immunity.
    Keywords:  Kunjin virus; Zika virus; antiviral response; innate immunity; integrated stress response pathway; interferon-stimulated gene; ribosome collision; translational regulation; viperin
    DOI:  https://doi.org/10.1016/j.molcel.2022.02.031
  30. J Cell Sci. 2022 Mar 23. pii: jcs.258652. [Epub ahead of print]
      Stress response pathways protect the lung from the damaging effects of environmental toxicants. Here we investigate the role of the Fragile X Mental Retardation Protein (FMRP), a multifunctional protein implicated in stress responses, in the lung. We report that FMRP is expressed in murine and human lungs, in the airways and more broadly. Analysis of airway stress responses in mice and in a murine cell line ex vivo, using the well-established Naphthalene (Nap) injury model, reveals that FMRP-deficient cells exhibit increased expression of markers of oxidative and genotoxic stress and increased cell death. Further inquiry shows that FMRP-deficient cells fail to actuate the Integrated Stress Response Pathway (ISR) and upregulate the transcription factor ATF4. Knockdown of ATF4 expression phenocopies the loss of FMRP. We extend our analysis of the role of FMRP to human bronchial BEAS-2B cells, using a 9, 10-Phenanthrenequinone air pollutant model, to find FMRP-deficient BEAS-2B also fail to actuate the ISR and exhibit greater susceptibility. Taken together, our data suggest that FMRP has a conserved role in protecting the airways by facilitating the ISR.
    Keywords:   FMR1 ; FMRP; Integrated Stress Response; Lung; Stress Response
    DOI:  https://doi.org/10.1242/jcs.258652
  31. Diabetologia. 2022 Mar 22.
      AIMS/HYPOTHESIS: Pancreatic beta cell dedifferentiation, transdifferentiation into other islet cells and apoptosis have been implicated in beta cell failure in type 2 diabetes, although the mechanisms are poorly defined. The endoplasmic reticulum stress response factor X-box binding protein 1 (XBP1) is a major regulator of the unfolded protein response. XBP1 expression is reduced in islets of people with type 2 diabetes, but its role in adult differentiated beta cells is unclear. Here, we assessed the effects of Xbp1 deletion in adult beta cells and tested whether XBP1-mediated unfolded protein response makes a necessary contribution to beta cell compensation in insulin resistance states.METHODS: Mice with inducible beta cell-specific Xbp1 deletion were studied under normal (chow diet) or metabolic stress (high-fat diet or obesity) conditions. Glucose tolerance, insulin secretion, islet gene expression, alpha cell mass, beta cell mass and apoptosis were assessed. Lineage tracing was used to determine beta cell fate.
    RESULTS: Deletion of Xbp1 in adult mouse beta cells led to beta cell dedifferentiation, beta-to-alpha cell transdifferentiation and increased alpha cell mass. Cell lineage-specific analyses revealed that Xbp1 deletion deactivated beta cell identity genes (insulin, Pdx1, Nkx6.1, Beta2, Foxo1) and derepressed beta cell dedifferentiation (Aldh1a3) and alpha cell (glucagon, Arx, Irx2) genes. Xbp1 deletion in beta cells of obese ob/ob or high-fat diet-fed mice triggered diabetes and worsened glucose intolerance by disrupting insulin secretory capacity. Furthermore, Xbp1 deletion increased beta cell apoptosis under metabolic stress conditions by attenuating the antioxidant response.
    CONCLUSIONS/INTERPRETATION: These findings indicate that XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and is required for beta cell compensation and prevention of diabetes in insulin resistance states.
    Keywords:  Beta cell identity; Dedifferentiation; Endoplasmic reticulum stress; Islets; Type 2 diabetes; Unfolded protein response
    DOI:  https://doi.org/10.1007/s00125-022-05669-7
  32. Hum Mol Genet. 2022 Mar 21. pii: ddac065. [Epub ahead of print]
      Wolfram syndrome is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years old, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after Tunicamycin treatment. Interestingly, both mutants lead to a decrease of their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for Wolfram syndrome.
    DOI:  https://doi.org/10.1093/hmg/ddac065
  33. FEBS J. 2022 Mar 21.
      Kinases are key regulatory signalling proteins governing numerous essential biological processes and cellular functions. Dysregulation of many protein kinases is associated with cancer initiation and progression. Given their crucial roles, there has been increasing interest in harnessing kinases as prospective drug targets for cancer. In recent decades, numerous small-molecule kinase inhibitors have been developed and revolutionized the cancer treatment landscape. Despite their great potential, challenges remain in developing highly selective and effective kinase inhibitors, with toxicity and resistance issues frequently arising. In this review, we first provide an overview of the role of kinases in carcinogenesis and describe the current progress with small-molecule kinase inhibitors that have been approved for clinical use. We then discuss the application of mass spectrometry (MS)-based proteomics strategies to help in the design of kinase inhibitors. Finally, we discuss the challenges and outlook concerning MS-based proteomics techniques for kinase drug research.
    Keywords:  cancer; kinase inhibitor; kinobeads; phosphoproteomics; thermal proteome profiling
    DOI:  https://doi.org/10.1111/febs.16442
  34. Sci Adv. 2022 Mar 25. 8(12): eabm1140
      Exosomes are extracellular vesicles of endosomal origin that are released by practically all cell types across metazoans. Exosomes are active vehicles of intercellular communication and can transfer lipids, RNAs, and proteins between different cells, tissues, or organs. Here, we describe a mechanism whereby proteins containing a KFERQ motif pentapeptide are loaded into a subpopulation of exosomes in a process that is dependent on the membrane protein LAMP2A. Moreover, we demonstrate that this mechanism is independent of the ESCRT machinery but dependent on HSC70, CD63, Alix, Syntenin-1, Rab31, and ceramides. We show that the master regulator of hypoxia HIF1A is loaded into exosomes by this mechanism to transport hypoxia signaling to normoxic cells. In addition, by tagging fluorescent proteins with KFERQ-like sequences, we were able to follow the interorgan transfer of exosomes. Our findings open new avenues for exosome engineering by allowing the loading of bioactive proteins by tagging them with KFERQ-like motifs.
    DOI:  https://doi.org/10.1126/sciadv.abm1140