bims-proteo Biomed News
on Proteostasis
Issue of 2022–09–04
thirty-two papers selected by
Eric Chevet, INSERM



  1. Cold Spring Harb Perspect Biol. 2022 Aug 30. pii: a041265. [Epub ahead of print]
      The endoplasmic reticulum (ER)-localized Hsp70 chaperone, BiP, undergoes a rapid, reversible and inactivating post-translational modification. This covalent modification complements the slower, conventional unfolded protein response (UPR) in matching the supply of active Hsp70 chaperone to the protein folding demand within the ER lumen. Long believed to be ADP-ribosylation, we now know this modification to be AMPylation (adenylylation) of BiP's threonine 518. Here, we review the discovery of the responsible enzyme (the Fic domain-containing protein FICD), the structural and biochemical basis of the inactivating modification and the discovery of FICD's dual role as the enzyme that both AMPylates and deAMPylates BiP. The structural basis of BiP recognition by FICD and recent in vitro insights into oligomeric state-mediated regulation of FICD's antagonistic enzymatic activities are also reviewed, the latter in the context of how such a regulatory system may arise in cells. Last, we consider the physiological significance of BiP AMPylation and speculate on the fitness benefits of this metazoan-specific adaptation.
    DOI:  https://doi.org/10.1101/cshperspect.a041265
  2. Cold Spring Harb Perspect Biol. 2022 Aug 30. pii: a041252. [Epub ahead of print]
      Tail-anchored (TA) proteins are an essential class of integral membrane proteins required for many aspects of cellular physiology. TA proteins contain a single carboxy-terminal transmembrane domain that must be post-translationally recognized, guided to, and ultimately inserted into the correct cellular compartment. The majority of TA proteins begin their biogenesis in the endoplasmic reticulum (ER) and utilize two parallel strategies for targeting and insertion: the guided-entry of tail-anchored proteins (GET) and ER-membrane protein complex (EMC) pathways. Here we focus on how these two sets of machinery target, transfer, and insert TAs into the lipid bilayer in close collaboration with quality control machinery. Additionally, we highlight the unifying features of the insertion process as revealed by recent structures of the GET and EMC membrane protein complexes.
    DOI:  https://doi.org/10.1101/cshperspect.a041252
  3. Cell Mol Life Sci. 2022 Sep;79(9): 503
      Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.
    Keywords:  Cytoskeleton; Epithelium; Intermediary filaments; Protein complexes fractionation; Protein–protein interaction; Synthetic lethality
    DOI:  https://doi.org/10.1007/s00018-022-04528-3
  4. Cold Spring Harb Perspect Biol. 2022 Aug 30. pii: a041249. [Epub ahead of print]
      High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
    DOI:  https://doi.org/10.1101/cshperspect.a041249
  5. Autophagy. 2022 Aug 28. 1-3
      The ability to maintain a functional proteome by clearing damaged or misfolded proteins is critical for cell survival, and aggregate-prone proteins accumulate in many neurodegenerative diseases, such as Huntington, Alzheimer, and Parkinson diseases. The removal of such proteins is mainly mediated by the ubiquitin-proteasome system and autophagy, and the activity of these systems declines in disease or with age. We recently found that targeting VCP/p97 with compounds like SMER28 enhances macroautophagy/autophagy flux mediated by the increased activity of the PtdIns3K complex I. Additionally, we found that SMER28 binding to VCP stimulates aggregate-prone protein clearance via the ubiquitin-proteasome system. This concurrent action of SMER28 on both degradation pathways resulted in the selective decrease in disease-causing proteins but not their wild-type counterparts. These results reveal a promising mode of VCP activation to counteract the toxicity caused by aggregate-prone proteins.
    Keywords:  Aggregate-prone proteins; PI3P; SMER28; VCP/p97; autophagy activation; ubiquitin–proteasome system
    DOI:  https://doi.org/10.1080/15548627.2022.2116832
  6. Nat Cell Biol. 2022 Sep 01.
      Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation. Using systematic, unbiased approaches in Drosophila cells, we identified specific membrane-fusion machinery, including regulators, a tether and SNARE proteins, that are required for the late targeting pathway. Components of this fusion machinery localize to LD-ER interfaces and organize at ER exit sites. We identified multiple cargoes for early and late ER-to-LD targeting pathways. Our findings provide a model for how proteins target to LDs from the ER either during LD formation or by protein-catalysed formation of membrane bridges.
    DOI:  https://doi.org/10.1038/s41556-022-00974-0
  7. Mol Cell. 2022 Aug 23. pii: S1097-2765(22)00761-4. [Epub ahead of print]
      The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.
    Keywords:  Doa4; Tul1; endosome; lysosome; phosphatidylethanolamine; phospholipids; ubiquitin; ubiquitin-like proteins; vacuole
    DOI:  https://doi.org/10.1016/j.molcel.2022.08.008
  8. J Clin Invest. 2022 Sep 01. pii: e162030. [Epub ahead of print]132(17):
      The intestinal tract is protected by epithelium-covering mucus, which is constantly renewed by goblet cells, a specialized type of epithelial cell. Mucus is largely composed of MUC2 mucin, an enormous molecule that poses a high demand on the endoplasmic reticulum (ER) for proper folding and protein assembly, creating a challenge for the secretory machinery in goblet cells. In this issue of the JCI, Grey et al. reveal that the ER resident protein and folding sensor ERN2 (also known as IRE1β) was instrumental for goblet cells to produce sufficient amounts of mucus to form a protective mucus layer. In the absence of ERN2, mucus production was reduced, impairing the mucus barrier, which allowed bacteria to penetrate and cause an epithelial cell stress response. This study emphasizes the importance of a controlled unfolded protein response (UPR) for goblet cell secretion.
    DOI:  https://doi.org/10.1172/JCI162030
  9. J Cell Biol. 2022 Sep 05. pii: e202205123. [Epub ahead of print]221(9):
      The nuclear envelope (NE) is a specialization of the endoplasmic reticulum with distinct biochemistry that defines inner and outer membranes connected at a pore membrane that houses nuclear pore complexes (NPCs). Quality control mechanisms that maintain the physical integrity and biochemical identity of these membranes are critical to ensure that the NE acts as a selective barrier that also contributes to genome stability and metabolism. As the proteome of the NE is highly integrated, it is challenging to turn over by conventional ubiquitin-proteasome and autophagy mechanisms. Further, removal of entire sections of the NE requires elaborate membrane remodeling that is poorly understood. Nonetheless, recent work has made inroads into discovering specializations of cellular degradative machineries tailored to meeting the unique challenges imposed by the NE. In addition, cells have evolved mechanisms to surveil and repair the NE barrier to protect against the deleterious effects of a breach in NE integrity, in the form of either a ruptured NE or a dysfunctional NPC. Here, we synthesize the most recent work exploring NE quality control mechanisms across eukaryotes.
    DOI:  https://doi.org/10.1083/jcb.202205123
  10. J Biol Chem. 2022 Aug 25. pii: S0021-9258(22)00867-5. [Epub ahead of print] 102424
      Neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases affect millions of Americans every year. One factor linked to formation of aggregates associated with these diseases is damage sustained to proteins by oxidative stress. Management of protein misfolding by the ubiquitous Hsp70 chaperone family can be modulated by modification of two key cysteines in the ATPase domain by oxidizing or thiol-modifying compounds. To investigate the biological consequences of cysteine modification on the Hsp70 Ssa1 in budding yeast, we generated cysteine null (cysteine to serine) and oxidomimetic (cysteine to aspartic acid) mutant variants of both C264 and C303 and demonstrate reduced ATP binding, hydrolysis, and protein folding properties in both the oxidomimetic and hydrogen peroxide-treated Ssa1. In contrast, cysteine nullification rendered Ssa1 insensitive to oxidative inhibition. Additionally, we determined the oxidomimetic ssa1-2CD (C264D, C303D) allele was unable to function as the sole Ssa1 isoform in yeast cells and also exhibited dominant negative effects on cell growth and viability. Ssa1 binds to and represses Hsf1, the major transcription factor controlling the heat shock response, and we found the oxidomimetic Ssa1 failed to stably interact with Hsf1, resulting in constitutive activation of the heat shock response. Consistent with our in vitro findings, ssa1-2CD cells were compromised for de novo folding, post-stress protein refolding, and in regulated degradation of a model terminally misfolded protein. Together, these findings pinpoint Hsp70 as a key link between oxidative stress and proteostasis, information critical to understanding cytoprotective systems that prevent and manage cellular insults underlying complex disease states.
    Keywords:  Hsp70; chaperone; cysteine; proteostasis; reactive oxygen species; redox; thiol modification
    DOI:  https://doi.org/10.1016/j.jbc.2022.102424
  11. J Biol Chem. 2022 Aug 30. pii: S0021-9258(22)00887-0. [Epub ahead of print] 102444
      Newly synthesized proteins in the secretory pathway, including glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), need to be correctly targeted and imported into the endoplasmic reticulum (ER) lumen. GPI-APs are synthesized in the cytosol as preproproteins, which contain an N-terminal signal sequence (SS), mature protein part, and C-terminal GPI-attachment sequence (GPI-AS), and translocated into the ER lumen where SS and GPI-AS are removed, generating mature GPI-APs. However, how various GPI-APs are translocated into the ER lumen in mammalian cells is unclear. Here, we investigated the ER entry pathways of GPI-APs using a panel of knockout (KO) cells defective in each signal recognition particle (SRP)-independent ER entry pathway-namely, Sec62, GET, or SND pathway. We found GPI-AP CD59 largely depends on the SND pathway for ER entry, whereas prion protein (Prion) and LY6K depend on both Sec62 and GET pathways. Using chimeric Prion and LY6K constructs in which the N-terminal SS or C-terminal GPI-AS was replaced with that of CD59, we revealed that the hydrophobicity of the SSs and GPI-ASs contributes to the dependence on Sec62 and GET pathways, respectively. Moreover, the ER entry route of chimeric Prion constructs with the C-terminal GPI-ASs replaced with that of CD59 was changed to the SND pathway. Simultaneously, their GPI structures and which oligosaccharyltransferase isoforms modify the constructs were altered without any amino acid change in the mature protein part. Taking these findings together, this study revealed N- and C-terminal sequences of GPI-APs determine the selective ER entry route, which in turn regulates subsequent maturation processes of GPI-APs.
    Keywords:  GET pathway; N-glycan; Prion; glycosylphosphatidylinositol; protein entry; protein translocation
    DOI:  https://doi.org/10.1016/j.jbc.2022.102444
  12. Mol Biol Cell. 2022 Aug 31. mbcE22040139
      Lysosomes are dynamic organelles that can remodel their membrane as an adaptive response to various cell signaling events including membrane damage. Recently, we have discovered that damaged lysosomes form and sort tubules into moving vesicles. We named this process LYTL for LYsosomal Tubulation/ sorting driven by LRRK2, as the Parkinson's disease protein LRRK2 promotes tubulation by recruiting the motor adaptor protein JIP4 to lysosomes via phosphorylated RAB proteins. Here we use spinning-disk microscopy combined with super-resolution to further characterize LYTL after membrane damage with LLOMe. We identified the endoplasmic reticulum (ER) colocalizing with sites of fission of lysosome-derived tubules. In addition, modifying the morphology of the ER by reducing ER tubules leads to a decrease in LYTL sorting suggesting that contact with tubular ER is necessary for lysosomal membrane sorting. Given the central roles of LRRK2 and lysosomal biology in PD, these discoveries are likely relevant to disease pathology and highlight interactions between organelles in this model. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E22-04-0139
  13. Hum Cell. 2022 Sep 01.
      MicroRNA dysregulation is a hallmark of hepatocellular carcinoma (HCC), leading to tumor growth and metastasis. Previous screening on patient specimens identified miR-198 as the most downregulated miRNA in HCC. Here, we show that miR-198 compensation leads to self-release into extracellular vesicles (EVs). Importantly, the vesicular secretion is mediated by autophagy-related pathway, initiated by sequestration of p62/miR-198 complexes in autophagosome-associated vesicle fractions. miR-198 is selectively recognized and loaded by p62 into autophagosomal fractions, whereas mutated miR-198 forms neither induce autophagy and nor interact with p62. Gain and loss of function experiments, using a CRIPR/Cas knockout (KO) and transgenic site-specific p62 mutants, identified p62 as an essential repressor of cellular miR-198 abundancy. Notably, EVs, harboring miR-198/p62 protein complexes, can be uptaken by cells in the close vicinity, leading to change of gene expression in recipient cells. In conclusion, miR-198 enhances autophagy; conversely autophagic protein p62 reduces the miR-198 levels by sorting into extracellular space. miR-198 is at first transcribed as primary miRNA, after being processed into single stranded mature miR-198 form, it is transported into cytoplasm ①. By interaction with p62 protein, miR-198 conglomerates and forms a binding complex ②. Since LC3 protein is an interaction partner of p62 protein, hence miR-198 is included into autophagosomes ③. By fusion with multivesicular bodies (MVB), miR-198-binding complex was recruited into amphisomes ④, the latter of which quickly turns into secretory MVB containing intraluminal vesicles⑤. By fusion with cell membrane, intraluminal vesicles were released into extracellular space as EVs ⑥.
    Keywords:  Autophagy; EV; HCC; SQSTM1; microRNA
    DOI:  https://doi.org/10.1007/s13577-022-00765-7
  14. Traffic. 2022 Sep;23(9): 462-473
      Endomembrane system compartments are significant elements in virtually all eukaryotic cells, supporting functions including protein synthesis, post-translational modifications and protein/lipid targeting. In terms of membrane area the endoplasmic reticulum (ER) is the largest intracellular organelle, but the origins of proteins defining the organelle and the nature of lineage-specific modifications remain poorly studied. To understand the evolution of factors mediating ER morphology and function we report a comparative genomics analysis of experimentally characterized ER-associated proteins involved in maintaining ER structure. We find that reticulons, REEPs, atlastins, Ufe1p, Use1p, Dsl1p, TBC1D20, Yip3p and VAPs are highly conserved, suggesting an origin at least as early as the last eukaryotic common ancestor (LECA), although many of these proteins possess additional non-ER functions in modern eukaryotes. Secondary losses are common in individual species and in certain lineages, for example lunapark is missing from the Stramenopiles and the Alveolata. Lineage-specific innovations include protrudin, Caspr1, Arl6IP1, p180, NogoR, kinectin and CLIMP-63, which are restricted to the Opisthokonta. Hence, much of the machinery required to build and maintain the ER predates the LECA, but alternative strategies for the maintenance and elaboration of ER shape and function are present in modern eukaryotes. Moreover, experimental investigations for ER maintenance factors in diverse eukaryotes are expected to uncover novel mechanisms.
    Keywords:  comparative genomics; endomembrane system; endoplasmic reticulum; eukaryogenesis; evolution; last eukaryotic common ancestor; phylogeny; reticulons; vesicular traffic
    DOI:  https://doi.org/10.1111/tra.12863
  15. Oncoimmunology. 2022 ;11(1): 2116844
      IRE1α is one of the three ER transmembrane transducers of the Unfolded Protein Response (UPR) activated under endoplasmic reticulum (ER) stress. IRE1α activation has a dual role in cancer as it may be either pro- or anti-tumoral depending on the studied models. Here, we describe the discovery that exogenous expression of IRE1α, resulting in IRE1α auto-activation, did not affect cancer cell proliferation in vitro but resulted in a tumor-suppressive phenotype in syngeneic immunocompetent mice. We found that exogenous expression of IRE1α in murine colorectal and Lewis lung carcinoma cells impaired tumor growth when syngeneic tumor cells were subcutaneously implanted in immunocompetent mice but not in immunodeficient mice. Mechanistically, the in vivo tumor-suppressive effect of overexpressing IRE1α in tumor cells was associated with IRE1α RNAse activity driving both XBP1 mRNA splicing and regulated IRE1-dependent decay of RNA (RIDD). We showed that the tumor-suppressive phenotype upon IRE1α overexpression was characterized by the induction of apoptosis in tumor cells along with an enhanced adaptive anti-cancer immunosurveillance. Hence, our work indicates that IRE1α overexpression and/or activation in tumor cells can limit tumor growth in immunocompetent mice. This finding might point toward the need of adjusting the use of IRE1α inhibitors in cancer treatments based on the predominant outcome of the RNAse activity of IRE1α.
    Keywords:  Cancer; IRE1α; RIDD; UPR; XBP1s; anti-cancer immunosurveillance; apoptosis
    DOI:  https://doi.org/10.1080/2162402X.2022.2116844
  16. Proc Natl Acad Sci U S A. 2022 Sep 06. 119(36): e2205608119
      Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.
    Keywords:  CRISPR screen; CSN5i-3; Cop9 signalosome; DNA replication; deneddylation
    DOI:  https://doi.org/10.1073/pnas.2205608119
  17. Mol Biol Cell. 2022 Aug 31. mbcE22070281
      Huntington's disease is characterized by accumulation of the aggregation-prone mutant Huntingtin (mHTT) protein. Here, we show that expression of exon 1 of mHTT in mouse cultured cells activates IRE1, the transmembrane sensor of stress in the endoplasmic reticulum, leading to degradation of the Blos1 mRNA and repositioning of lysosomes and late endosomes toward the microtubule organizing center. Overriding Blos1 degradation results in excessive accumulation of mHTT aggregates in both cultured cells and primary neurons. Although mHTT is degraded by macroautophagy when highly expressed, we show that prior to the formation of large aggregates, mHTT is degraded via an ESCRT-dependent, macroautophagy-independent pathway consistent with endosomal microautophagy. This pathway is enhanced by Blos1 degradation and appears to protect cells from a toxic, less aggregated form of mHTT.
    DOI:  https://doi.org/10.1091/mbc.E22-07-0281
  18. Autophagy. 2022 Sep 02. 1-3
      ATG4B, a cysteine protease promoting autophagosome formation by reversibly modifying Atg8-family proteins, plays a vital role in controlling macroautophagy/autophagy initiation in response to stress. However, the molecular mechanism underlying the regulation of ATG4B activity is far from well elucidated. In the current study, we firstly revealed that the acetylation level of ATG4B at lysine residue 39 (K39) is strongly involved in regulating its activity and autophagy. Specifically, SIRT2 deacetylates ATG4B K39, enhancing ATG4B activity and autophagic flux, which can be antagonized by EP300/p300. Starvation treatment contributes to EP300 suppression and SIRT2 activation, promoting the deacetylation of ATG4B K39, which leads to the elevation of ATG4B activity and finally autophagy initiation. Mechanistic investigation showed that starvation reduces CCNE (cyclin E), resulting in the downregulation of the CCNE-CDK2 protein complex, decreasing the phosphorylation of SIRT2 Ser331 and finally activating SIRT2. In addition, we confirmed that SIRT2 promotes autophagy via suppressing acetylation of ATG4B at K39 using sirt2 gene knockout (sirt2-/-) mice. Collectively, our results have revealed the acetylation-mediated regulation of ATG4B cysteine protease activity in autophagy initiation in response to nutritional deficiency.
    Keywords:  ATG4B; Acetylation; EP300; SIRT2; autophagy; starvation
    DOI:  https://doi.org/10.1080/15548627.2022.2117887
  19. Sci Adv. 2022 Sep 02. 8(35): eabo1215
      Selective degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is initiated by ER-phagy receptors, which facilitate the incorporation of ER fragments into autophagosomes. FAM134 reticulon family proteins (FAM134A, FAM134B, and FAM134C) are ER-phagy receptors with structural similarities and nonredundant functions. Whether they respond differentially to the stimulation of ER-phagy is unknown. Here, we describe an activation mechanism unique to FAM134C during starvation. In fed conditions, FAM134C is phosphorylated by casein kinase 2 (CK2) at critical residues flanking the LIR domain. Phosphorylation of these residues negatively affects binding affinity to the autophagy proteins LC3. During starvation, mTORC1 inhibition limits FAM134C phosphorylation by CK2, hence promoting receptor activation and ER-phagy. Using a novel tool to study ER-phagy in vivo and FAM134C knockout mice, we demonstrated the physiological relevance of FAM134C phosphorylation during starvation-induced ER-phagy in liver lipid metabolism. These data provide a mechanistic insight into ER-phagy regulation and an example of autophagy selectivity during starvation.
    DOI:  https://doi.org/10.1126/sciadv.abo1215
  20. Cell Metab. 2022 Aug 23. pii: S1550-4131(22)00348-5. [Epub ahead of print]
      Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.
    Keywords:  ER stress; IRE1; NAFLD; NASH; PIDDosome; SCAP; SREBP; caspase-2; steatohepatitis; steatosis
    DOI:  https://doi.org/10.1016/j.cmet.2022.08.005
  21. J Biol Chem. 2022 Aug 26. pii: S0021-9258(22)00874-2. [Epub ahead of print] 102431
      The Ubiquitin-fold modifier 1 (Ufm1) is a ubiquitin-like protein that can also be conjugated to protein substrates and subsequently alter their fates. Both UFMylation and de-UFMylation are mediated by Ufm1-specific proteases (UFSPs). In humans, it is widely believed that UFSP2 is the only active Ufm1 protease involved in Ufm1 maturation and de-UFMylation, whereas UFSP1 is thought to be inactive. Here, Liang et al. provide strong evidence showing that human UFSP1 is also an active Ufm1 protease. These results solve an age-old mystery in the human Ufm1 conjugation system and could have a greater impact not only on Ufm1 biology, but also on the translation of genes employing non-traditional start codons.
    DOI:  https://doi.org/10.1016/j.jbc.2022.102431
  22. Nat Commun. 2022 Sep 01. 13(1): 5133
      DNA end resection is delicately regulated through various types of post-translational modifications to initiate homologous recombination, but the involvement of SUMOylation in this process remains incompletely understood. Here, we show that MRE11 requires SUMOylation to shield it from ubiquitin-mediated degradation when resecting damaged chromatin. Upon DSB induction, PIAS1 promotes MRE11 SUMOylation on chromatin to initiate DNA end resection. Then, MRE11 is deSUMOylated by SENP3 mainly after it has moved away from DSB sites. SENP3 deficiency results in MRE11 degradation failure and accumulation on chromatin, causing genome instability. We further show that cancer-related MRE11 mutants with impaired SUMOylation exhibit compromised DNA repair ability. Thus, we demonstrate that MRE11 SUMOylation in coordination with ubiquitylation is dynamically controlled by PIAS1 and SENP3 to facilitate DNA end resection and maintain genome stability.
    DOI:  https://doi.org/10.1038/s41467-022-32920-x
  23. FEBS J. 2022 Sep 01.
      Signal peptide peptidase (SPP) and SPP-like (SPPL) aspartyl intramembrane proteases are known to contribute to a sequential processing of type II-oriented membrane proteins referred to as regulated intramembrane proteolysis. The ER-resident family members SPP and SPPL2c were shown to also cleave tail-anchored proteins, including selected SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins facilitating membrane fusion events. Here, we analysed whether the related SPPL2a and SPPL2b proteases, which localise to the endocytic or late secretory pathway, are also able to process SNARE proteins. Therefore, we screened 18 SNARE proteins for cleavage by SPPL2a and SPPL2b based on cellular co-expression assays, of which the proteins VAMP1, VAMP2, VAMP3 and VAMP4 were processed by SPPL2a/b demonstrating the capability of these two proteases to proteolyse tail-anchored-proteins. Cleavage of the four SNARE proteins was scrutinised at the endogenous level upon SPPL2a/b inhibition in different cell lines as well as by analysing VAMP1-4 levels in tissues and primary cells of SPPL2a/b double-deficient (dKO) mice. Loss of SPPL2a/b activity resulted in an accumulation of VAMP1-4 in a cell type- and tissue-dependent manner identifying these proteins as SPPL2a/b substrates validated in vivo. Therefore, we propose that SPPL2a/b control cellular levels of VAMP1-4 by initiating the degradation of these proteins, which might impact on cellular trafficking.
    Keywords:  Intramembrane Proteolysis; Membrane trafficking; Protein degradation; SNARE protein; Signal peptide peptidase-like proteases
    DOI:  https://doi.org/10.1111/febs.16610
  24. Trends Biochem Sci. 2022 Aug 27. pii: S0968-0004(22)00211-0. [Epub ahead of print]
      The COP9 signalosome (CSN) is a universal regulator of Cullin-RING ubiquitin ligases (CRLs) - a family of modular enzymes that control various cellular processes via timely degradation of key signaling proteins. The CSN, with its eight-subunit architecture, employs multisite binding of CRLs and inactivates CRLs by removing a small ubiquitin-like modifier named neural precursor cell-expressed, developmentally downregulated 8 (Nedd8). Besides the active site of the catalytic subunit CSN5, two allosteric sites are present in the CSN, one of which recognizes the substrate recognition module and the presence of CRL substrates, and the other of which can 'glue' the CSN-CRL complex by recruitment of inositol hexakisphosphate. In this review, we present recent findings on the versatile regulation of CSN-CRL complexes.
    Keywords:  NF-κB; deubiquitinylases; inositol phosphate metabolism; ubiquitin-proteasome system
    DOI:  https://doi.org/10.1016/j.tibs.2022.08.003
  25. J Cell Biol. 2022 Oct 03. pii: e202110164. [Epub ahead of print]221(10):
      Insulin levels are essential for the maintenance of glucose homeostasis, and deviations lead to pathoglycemia or diabetes. However, the metabolic mechanism controlling insulin quantity and quality is poorly understood. In pancreatic β cells, insulin homeostasis and release are tightly governed by insulin secretory granule (ISG) trafficking, but the required regulators and mechanisms are largely unknown. Here, we identified that VAMP4 controlled the insulin levels in response to glucose challenge. VAMP4 deficiency led to increased blood insulin levels and hyperresponsiveness to glucose. In β cells, VAMP4 is packaged into immature ISGs (iISGs) at trans-Golgi networks and subsequently resorted to clathrin-coated vesicles during granule maturation. VAMP4-positive iISGs and resorted vesicles then fuse with lysosomes facilitated by a SNARE complex consisting of VAMP4, STX7, STX8, and VTI1B, which ensures the breakdown of excess (pro)insulin and obsolete materials and thus maintenance of intracellular insulin homeostasis. Thus, VAMP4 is a key factor regulating the insulin levels and a potential target for the treatment of diabetes.
    DOI:  https://doi.org/10.1083/jcb.202110164
  26. Mol Cell. 2022 Aug 25. pii: S1097-2765(22)00758-4. [Epub ahead of print]
      Cellular quiescence-reversible exit from the cell cycle-is an important feature of many cell types important for organismal health. Quiescent cells activate protective mechanisms that allow their persistence in the absence of growth and division for long periods of time. Aging and cellular dysfunction compromise the survival and re-activation of quiescent cells over time. Counteracting this decline are two interconnected organelles that lie at opposite ends of the secretory pathway: the endoplasmic reticulum and lysosomes. In this review, we highlight recent studies exploring the roles of these two organelles in quiescent cells from diverse contexts and speculate on potential other roles they may play, such as through organelle contact sites. Finally, we discuss emerging models of cellular quiescence, utilizing new cell culture systems and model organisms, that are suited to the mechanistic investigation of the functions of these organelles in quiescent cells.
    Keywords:  ER; aging; lysosome; quiescence; stem cells
    DOI:  https://doi.org/10.1016/j.molcel.2022.08.005
  27. Biosci Rep. 2022 Aug 31. pii: BSR20210848. [Epub ahead of print]
      Cell homeostasis is maintained in all organisms by the constant adjustment of cell constituents and organisation to account for environmental context. Fine-tuning of the optimal balance of proteins for the conditions, or protein homeostasis, is critical to maintaining cell homeostasis. Actin, a major constituent of the cytoskeleton, forms many different structures which are acutely sensitive to the cell environment. Furthermore, actin structures interact with and are critically important for the function and regulation of multiple factors involved with mRNA and protein production, protein regulation, and protein degradation. Altogether, actin is a key, if often overlooked, regulator of protein homeostasis across eukaryotes. In this review, we highlight these roles and how they are altered following cell stress, from mRNA transcription to protein degradation.
    Keywords:  Actin; Cell stress; protein homeostasis; protein regulation; proteostasis
    DOI:  https://doi.org/10.1042/BSR20210848
  28. FEBS Lett. 2022 Aug 24.
      The hypoxia-inducible factors (HIF)-1α and HIF-2α are central regulators of transcriptional programmes in settings such as development and tumour expansion. HIF-2α moonlights as a cap-dependent translation factor. We provide new insights into how the interferon-stimulated gene 15 (ISG15), a ubiquitin-like modifier, and the HIFs regulate one another in hypoxia and interferon-induced cells. We show that upon ISGylation induction and HIF-α stabilization, both HIFs promote protein ISGylates through transcriptional and/or post-transcriptional pathways. We show the first evidence of HIF-2α modification by ISG15. ISGylation induces system-level alterations to the HIF transcriptional programme and increases the cytoplasmic/nuclear fraction and translation activity of HIF-2α. This work identifies ISG15 as a regulator of hypoxic mRNA translation, which has implications for immune processes and disease progression.
    Keywords:  HIF; gene expression; hypoxia; interferon, ISG15; translation
    DOI:  https://doi.org/10.1002/1873-3468.14476
  29. EMBO J. 2022 Sep 02. e109288
      Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
    Keywords:  biomarkers; cancer; extracellular vesicles and particles; metastasis; therapeutic deliverables
    DOI:  https://doi.org/10.15252/embj.2021109288
  30. J Biol Chem. 2022 Aug 30. pii: S0021-9258(22)00886-9. [Epub ahead of print] 102443
      Spinal cord injury (SCI) is the most severe result of spine injury, but no effective therapy exists to treat SCI. We have previously shown that the E3 ubiquitin ligase Two RING fingers and DRIL 1 (Triad1) promotes neurite outgrowth after SCI. However, the mechanism by which Triad1 affects neuron growth and the potential involvement of its ubiquitination activity is unclear. Neuroprotective cytokine pleiotrophin (PTN) can promote microglia proliferation and neurotrophic factor secretion to achieve neuroprotection. We found using immunostaining and behavioral assays in rats that the expression of Triad1 and the PTN was peaked at 1 day after SCI, and that Triad1 improved motor function and histomorphological injury. We also show using flow cytometry and astrocyte/neuronal co-culture assays that Triad1 overexpression promoted PTN protein levels, neurotrophic growth factor (NGF) expression, brain-derived neurotrophic factor (BDNF) expression, astrocyte and neuronal viability, and neurite outgrowth, but suppressed astrocyte apoptosis, while shRNA-mediated knockdown of Triad1 and PTN had the opposite effects. Ubiquitin ligase murine double mutant 2 (MDM2) has previously been demonstrated to participate in the process of neurite outgrowth, and mediate ubiquitination of p53. Furthermore, we demonstrate overexpression of MDM2 downregulated PTN protein levels, NGF expression, and BDNF expression in astrocytes, and inhibited neurite outgrowth of neurons. In addition, MDM2 facilitated PTN ubiquitination, which was reversed by Triad1. Finally, we show simultaneous sh-PTN and MDM2 overexpression attenuated the neurite outgrowth-promoting effect of Triad1 overexpression. In conclusion, we propose Triad1 promotes astrocyte-dependent neurite outgrowth to accelerate recovery after SCI by inhibiting MDM2-mediated PTN ubiquitination.
    Keywords:  MDM2; PTN; Triad1; neurite outgrowth; spinal cord injury
    DOI:  https://doi.org/10.1016/j.jbc.2022.102443
  31. J Exp Med. 2022 Nov 07. pii: e20221085. [Epub ahead of print]219(11):
      Plasmacytoid dendritic cells (pDCs) chronically produce type I interferon (IFN-I) in autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). We report that the IRE1α-XBP1 branch of the unfolded protein response (UPR) inhibits IFN-α production by TLR7- or TLR9-activated pDCs. In SSc patients, UPR gene expression was reduced in pDCs, which inversely correlated with IFN-I-stimulated gene expression. CXCL4, a chemokine highly secreted in SSc patients, downregulated IRE1α-XBP1-controlled genes and promoted IFN-α production by pDCs. Mechanistically, IRE1α-XBP1 activation rewired glycolysis to serine biosynthesis by inducing phosphoglycerate dehydrogenase (PHGDH) expression. This process reduced pyruvate access to the tricarboxylic acid (TCA) cycle and blunted mitochondrial ATP generation, which are essential for pDC IFN-I responses. Notably, PHGDH expression was reduced in pDCs from patients with SSc and SLE, and pharmacological blockade of TCA cycle reactions inhibited IFN-I responses in pDCs from these patients. Hence, modulating the IRE1α-XBP1-PHGDH axis may represent a hitherto unexplored strategy for alleviating chronic pDC activation in autoimmune disorders.
    DOI:  https://doi.org/10.1084/jem.20221085
  32. EMBO J. 2022 Aug 29. e111344
      Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.
    Keywords:  HDX-MS; folding; mature domain; secretion; signal peptide
    DOI:  https://doi.org/10.15252/embj.2022111344