J Biol Chem. 2024 Feb 21. pii: S0021-9258(24)00154-6. [Epub ahead of print] 105778
Sophia Louise Lucille Park,
Uri Nimrod Ramírez-Jarquín,
Neelam Shahani,
Oscar Rivera,
Manish Sharma,
Preksha Sandipkumar Joshi,
Aayushi Hansalia,
Sunayana Dagar,
Francis P McManus,
Pierre Thibault,
Srinivasa Subramaniam.
The mechanistic target of rapamycin (mTOR) signaling is influenced by multiple regulatory proteins and post-translational modifications, however, underlying mechanisms remain unclear. Here, we report a novel role of small ubiquitin-like modifier (SUMO) in mTOR complex assembly and activity. By investigating the SUMOylation status of core mTOR components, we observed that the regulatory subunit, GβL, is modified by SUMO1, 2, and 3 isoforms. Using mutagenesis and mass spectrometry, we identified that GβL is SUMOylated at lysine sites K86, K215, K245, K261 and K305. We found that SUMO depletion reduces mTOR-Raptor and mTOR-Rictor complex formation and diminishes nutrient-induced mTOR signaling. Reconstitution with WT GβL but not SUMOylation defective KR mutant GβL promote mTOR signaling in GβL-depleted cells. Furthermore, we found that amino acids-induced mTORC1 signaling is diminished in the SUMO1-KO mice. Taken together, we report for the very first time that SUMO modifies GβL, influences the assembly of mTOR protein complexes, and regulates mTOR activity.
Keywords: Amino acid stimulation; Kinase signaling; Lysine-site regulation; Nutrient signaling; Post-translational modification; Protein-protein interaction; SUMO isoforms; SUMO mechanism; Sumo interactive motif (SIM)