bims-proteo Biomed News
on Proteostasis
Issue of 2024‒03‒31
thirty-six papers selected by
Eric Chevet, INSERM



  1. Cell Rep. 2024 Mar 28. pii: S2211-1247(24)00346-2. [Epub ahead of print]43(4): 114018
      Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.
    Keywords:  CP: Cell biology; CP: Molecular biology; Hsp78; MitoStores; Pim1 protease; Var1 bodies; aggregates; chaperones; mitochondria; mitoribosome; protein folding; protein import
    DOI:  https://doi.org/10.1016/j.celrep.2024.114018
  2. Keio J Med. 2024 ;73(1): 13
      The endoplasmic reticulum (ER), where newly synthesized secretory and transmembrane proteins are folded and assembled, has the ability to discriminate folded proteins from unfolded proteins and controls the quality of synthesized proteins. Only correctly folded molecules are allowed to move along the secretory pathway, whereas unfolded proteins are retained in the ER.The ER contains a number of molecular chaperones and folding enzymes (ER chaperones hereafter), which assist productive folding of proteins, and therefore newly synthesized proteins usually gain correct tertiary and quaternary structures quite efficiently. Yet unfolded or misfolded proteins even after assistance of ER chaperones are retrotranslocated back to the cytosol, ubiquitinated and degraded by the proteasome. This disposal system is called ER-associated degradation (ERAD). Thus, the quality of proteins in the ER is ensured by two distinct mechanisms, productive folding and ERAD, which have opposite directions.Under a variety of conditions collectively termed ER stress, however, unfolded or misfolded proteins accumulate in the ER, which in turn activates ER stress response or Unfolded Protein Response (UPR). The UPR is mediated by transmembrane proteins in the ER, and three ER stress sensors/transducers, namely IRE1, PERK and ATF6, operates ubiquitously in mammals. Thanks to these signaling pathways, translation is generally attenuated to decrease the burden on the folding machinery; transcription of ER chaperones is induced to augment folding capacity; and transcription of components of ERAD machinery is induced to enhance degradation capacity, leading to maintenance of the homeostasis of the ER. If ER stress sustains, cells undergo to apoptosis.I will talk on the mechanism, evolution, and physiological importance of the UPR and ERAD as well as its involvement in development and progression of various diseases.
    DOI:  https://doi.org/10.2302/kjm.ABSTRACT_73_1-2
  3. Sci Adv. 2024 Mar 29. 10(13): eadh0123
      E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.
    DOI:  https://doi.org/10.1126/sciadv.adh0123
  4. Proc Natl Acad Sci U S A. 2024 Apr 02. 121(14): e2320013121
      Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.
    Keywords:  eukaryotic initiation factor-2/*metabolism; phosphorylation; protein crystallography; protein phosphatase /*metabolism; substrate specificity
    DOI:  https://doi.org/10.1073/pnas.2320013121
  5. Mol Biol Cell. 2024 Mar 27. mbcE24010041
      Imbalances in mitochondrial proteostasis are associated with pathologic mitochondrial dysfunction implicated in etiologically-diverse diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria in response to mitochondrial stress. Numerous stress-responsive signaling pathways have been suggested to regulate mitochondria in response to proteotoxic stress. These include the integrated stress response (ISR), the heat shock response (HSR), and the oxidative stress response (OSR). Here, we define the stress signaling pathways activated in response to chronic mitochondrial proteostasis perturbations by monitoring the expression of sets of genes regulated downstream of each of these signaling pathways in published Perturb-seq datasets from K562 cells CRISPRi-depleted of mitochondrial proteostasis factors. Interestingly, we find that the ISR is preferentially activated in response to chronic, genetically-induced mitochondrial proteostasis stress, with no other pathway showing significant activation. Further, we demonstrate that CRISPRi depletion of other mitochondria-localized proteins similarly shows preferential activation of the ISR relative to other stress-responsive signaling pathways. These results both establish our gene set profiling approach as a viable strategy to probe stress responsive signaling pathways induced by perturbations to specific organelles and identify the ISR as the predominant stress-responsive signaling pathway activated in response to chronically disrupted of mitochondrial proteostasis.
    DOI:  https://doi.org/10.1091/mbc.E24-01-0041
  6. Proc Natl Acad Sci U S A. 2024 Apr 02. 121(14): e2318039121
      Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, β-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited β-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. β-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.
    Keywords:  OPTN; RCHY1; melanophagy; melanosome; selective autophagy
    DOI:  https://doi.org/10.1073/pnas.2318039121
  7. Mol Biol Cell. 2024 Mar 27. mbcE23080332
      Lysosome turnover and biogenesis are induced in response to treatment of cells with agents that cause membrane rupture, but whether other stress conditions engage similar homeostatic mechanisms is not well understood. Recently we described a form of selective turnover of lysosomes that is induced by metabolic stress or by treatment of cells with ionophores or lysosomotropic agents, involving the formation of intraluminal vesicles within intact organelles through microautophagy. Selective turnover involves non-canonical autophagy and the lipidation of LC3 onto lysosomal membranes, as well as the autophagy gene-dependent formation of intraluminal vesicles. Here we find a form of microautophagy induction that requires activity of the lipid kinase PIKfyve and is associated with the nuclear translocation of TFEB, a known mediator of lysosome biogenesis. We show that LC3 undergoes turnover during this process, and that PIKfyve is required for the formation of intraluminal vesicles and LC3 turnover, but not for LC3 lipidation onto lysosomal membranes, demonstrating that microautophagy is regulated by PIKfyve downstream of non-canonical autophagy. We further show that TFEB activation requires non-canonical autophagy but not PIKfyve, distinguishing the regulation of biogenesis from microautophagy occurring in response to agents that induce lysosomal stress. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E23-08-0332
  8. Microbiol Mol Biol Rev. 2024 Mar 27. e0017622
      SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
    Keywords:  DnaJ; DnaK; Hsp40; Hsp70; Hsp90; HtpG; client; cochaperone
    DOI:  https://doi.org/10.1128/mmbr.00176-22
  9. Cell Stress Chaperones. 2024 Mar 21. pii: S1355-8145(24)00060-9. [Epub ahead of print]
      The Hsp70 chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) co-evolved with Hsp70s to trigger ATP-hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1's ATPase, indicate the presence of yet uncharacterized intra-molecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an auto-regulatory role to these intra-molecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1-4 chaperones that are the most abundant Hsp70s in the yeast cytosol.
    Keywords:  DNAJA; DNAJB; JDPs; autorepression; co-evolution
    DOI:  https://doi.org/10.1016/j.cstres.2024.03.008
  10. Autophagy. 2024 Mar 28. 1-10
      Sarcopenia is a major contributor to disability in older adults, and thus, it is key to elucidate the mechanisms underlying its development. Increasing evidence suggests that impaired macroautophagy/autophagy contributes to the development of sarcopenia. However, the mechanisms leading to reduced autophagy during aging remain largely unexplored, and whether autophagy activation protects from sarcopenia has not been fully addressed. Here we show that the autophagy regulator TP53INP2/TRP53INP2 is decreased during aging in mouse and human skeletal muscle. Importantly, chronic activation of autophagy by muscle-specific overexpression of TRP53INP2 prevents sarcopenia and the decline of muscle function in mice. Acute re-expression of TRP53INP2 in aged mice also improves muscle atrophy, enhances mitophagy, and reduces ROS production. In humans, high levels of TP53INP2 in muscle are associated with increased muscle strength and healthy aging. Our findings highlight the relevance of an active muscle autophagy in the maintenance of muscle mass and prevention of sarcopenia.Abbreviation: ATG7: autophagy related 7; BMI: body mass index; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ROS: reactive oxygen species; TP53INP2: tumor protein p53 inducible nuclear protein 2; WT: wild type.
    Keywords:  Sarcopenia; aging; autophagy; mitophagy; muscle atrophy
    DOI:  https://doi.org/10.1080/15548627.2024.2333717
  11. Mol Cell. 2024 Mar 19. pii: S1097-2765(24)00182-5. [Epub ahead of print]
      Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.
    Keywords:  biomolecular condensates; budding yeast; eIF4A; eIF4F; eIF4G; heat shock; mRNPs; stress granules; thermosensor; translation
    DOI:  https://doi.org/10.1016/j.molcel.2024.02.038
  12. JCI Insight. 2024 Mar 26. pii: e167578. [Epub ahead of print]
      Skeletal muscle wasting results from numerous pathological conditions impacting both the musculoskeletal and nervous systems. A unifying feature of these pathologies is the upregulation of members of the E3 ubiquitin ligase family, resulting in increased proteolytic degradation of target proteins. Despite the critical role E3 ubiquitin ligases in regulating muscle mass, the specific proteins they target for degradation and the mechanisms by which they regulate skeletal muscle homeostasis remain ill-defined. Here, using zebrafish loss of function models combined with in vivo cell biology and proteomic approaches, we reveal a role of atrogin-1 in regulating the levels of the endoplasmic reticulum chaperone BiP. Loss of atrogin-1 results in an accumulation of BiP, leading to impaired mitochondrial dynamics and a subsequent loss in muscle fibre integrity. We further implicate a disruption in atrogin-1 mediated BiP regulation in the pathogenesis of Duchenne muscular dystrophy. We reveal that BiP is not only upregulated in Duchenne muscular dystrophy, but its inhibition using pharmacological strategies, or by upregulating atrogin-1, significantly ameliorates pathology in a zebrafish model of Duchenne muscular dystrophy. Collectively, our data implicates atrogin-1 and BiP in the pathogenesis of Duchenne muscular dystrophy, and highlights atrogin-1's essential role in maintaining muscle homeostasis.
    Keywords:  Genetic diseases; Muscle; Muscle biology; Ubiquitin-proteosome system
    DOI:  https://doi.org/10.1172/jci.insight.167578
  13. Structure. 2024 Mar 22. pii: S0969-2126(24)00081-9. [Epub ahead of print]
      GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
    Keywords:  GCN2; cryoEM; eIF2α kinase; integrated stress response; pseudoHisRS; pseudoenzyme; tRNA binding
    DOI:  https://doi.org/10.1016/j.str.2024.02.021
  14. bioRxiv. 2024 Feb 29. pii: 2024.02.29.582673. [Epub ahead of print]
      Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy. Here, we identified that diverse mitochondrial myopathy models elicit a protective mitochondrial integrated stress response (mt-ISR), mediated by OMA1-DELE1 signaling. The response was similar following disruptions in mtDNA maintenance, from knockout of Tfam , and mitochondrial protein unfolding, from disease-causing mutations in CHCHD10 (G58R and S59L). The preponderance of the response was directed at upregulating pathways for aminoacyl-tRNA biosynthesis, the intermediates for protein synthesis, and was similar in heart and skeletal muscle but more limited in brown adipose challenged with cold stress. Strikingly, models with early DELE1 mt-ISR activation failed to grow and survive to adulthood in the absence of Dele1 , accounting for some but not all of OMA1's protection. Notably, the DELE1 mt-ISR did not slow net protein synthesis in stressed striated muscle, but instead prevented loss of translation-associated proteostasis in muscle fibers. Together our findings identify that the DELE1 mt-ISR mediates a stereotyped response to diverse forms of mitochondrial stress and is particularly critical for maintaining growth and survival in early-onset mitochondrial myopathy.
    DOI:  https://doi.org/10.1101/2024.02.29.582673
  15. Nat Commun. 2024 Mar 25. 15(1): 2638
      Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.
    DOI:  https://doi.org/10.1038/s41467-024-46881-w
  16. Nat Commun. 2024 Mar 29. 15(1): 2760
      The cGAS-STING pathway plays a crucial role in anti-tumoral responses by activating inflammation and reprogramming the tumour microenvironment. Upon activation, STING traffics from the endoplasmic reticulum (ER) to Golgi, allowing signalling complex assembly and induction of interferon and inflammatory cytokines. Here we report that cGAMP stimulation leads to a transient decline in ER cholesterol levels, mediated by Sterol O-Acyltransferase 1-dependent cholesterol esterification. This facilitates ER membrane curvature and STING trafficking to Golgi. Notably, we identify two cholesterol-binding motifs in STING and confirm their contribution to ER-retention of STING. Consequently, depletion of intracellular cholesterol levels enhances STING pathway activation upon cGAMP stimulation. In a preclinical tumour model, intratumorally administered cholesterol depletion therapy potentiated STING-dependent anti-tumoral responses, which, in combination with anti-PD-1 antibodies, promoted tumour remission. Collectively, we demonstrate that ER cholesterol sets a threshold for STING signalling through cholesterol-binding motifs in STING and we propose that this could be exploited for cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41467-024-47046-5
  17. Nature. 2024 Mar 27.
      Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.
    DOI:  https://doi.org/10.1038/s41586-024-07250-1
  18. Cell Rep. 2024 Mar 26. pii: S2211-1247(24)00320-6. [Epub ahead of print]43(4): 113992
      Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.
    Keywords:  CP: Cell biology; CP: Metabolism; Ca(2+); OSBP; beta cell; endoplasmic reticulum; insulin; membrane contact sites; pH; phophatidylinositol 4-phosphate; secretory granule
    DOI:  https://doi.org/10.1016/j.celrep.2024.113992
  19. ACS Omega. 2024 Mar 19. 9(11): 12611-12621
      PROTAC (proteolysis-targeting chimeras) is a rapidly evolving technology to target undruggable targets. The mechanism by which this happens is when a bifunctional molecule binds to a target protein and also brings an E3 ubiquitin ligase in proximity to trigger ubiquitination and degradation of the target protein. Yet, in-silico-driven approaches to design these heterobifunctional molecules that have the desired functional properties to induce proximity between the target protein and E3 ligase remain to be established. In this paper, we present a novel in-silico method for PROTAC design and to demonstrate the validity of our approach, we show that for a BRD4-VHL-PROTAC-mediated ternary complex known in the literature, we are able to reproduce the PROTAC binding mode, the structure of the ternary complex formed therein, and the free energy (ΔG) thermodynamics favoring ternary complexation through theoretical/computational methodologies. Further, we demonstrate the use of thermal titration molecule dynamics (TTMD) to differentiate the stability of PROTAC-mediated ternary complexes. We employ the proposed methodology to design a PROTAC for a new system of FGFR1-MDM2 to degrade the FGFR1 (fibroblast growth factor receptor 1) that is overexpressed in cancer. Our work presented here and named as PROTAC-Designer-Evaluator (PRODE) contributes to the growing literature of in-silico approaches to PROTAC design and evaluation by incorporating the latest in-silico methods and demonstrates advancement over previously published PROTAC in-silico literature.
    DOI:  https://doi.org/10.1021/acsomega.3c07318
  20. Nat Chem Biol. 2024 Mar 22.
      Cotransins target the Sec61 translocon and inhibit the biogenesis of an undefined subset of secretory and membrane proteins. Remarkably, cotransin inhibition depends on the unique signal peptide (SP) of each Sec61 client, which is required for cotranslational translocation into the endoplasmic reticulum. It remains unknown how an SP's amino acid sequence and biophysical properties confer sensitivity to structurally distinct cotransins. Here we describe a fluorescence-based, pooled-cell screening platform to interrogate nearly all human SPs in parallel. We profiled two cotransins with distinct effects on cancer cells and discovered a small subset of SPs, including the oncoprotein human epidermal growth factor receptor 3 (HER3), with increased sensitivity to the more selective cotransin, KZR-9873. By comparing divergent mouse and human orthologs, we unveiled a position-dependent effect of arginine on SP sensitivity. Our multiplexed profiling platform reveals how cotransins can exploit subtle sequence differences to achieve SP discrimination.
    DOI:  https://doi.org/10.1038/s41589-024-01592-7
  21. Nat Chem Biol. 2024 Mar 25.
      The μ-opioid receptor (μOR) represents an important target of therapeutic and abused drugs. So far, most understanding of μOR activity has focused on a subset of known signal transducers and regulatory molecules. Yet μOR signaling is coordinated by additional proteins in the interaction network of the activated receptor, which have largely remained invisible given the lack of technologies to interrogate these networks systematically. Here we describe a proteomics and computational approach to map the proximal proteome of the activated μOR and to extract subcellular location, trafficking and functional partners of G-protein-coupled receptor (GPCR) activity. We demonstrate that distinct opioid agonists exert differences in the μOR proximal proteome mediated by endocytosis and endosomal sorting. Moreover, we identify two new μOR network components, EYA4 and KCTD12, which are recruited on the basis of receptor-triggered G-protein activation and might form a previously unrecognized buffering system for G-protein activity broadly modulating cellular GPCR signaling.
    DOI:  https://doi.org/10.1038/s41589-024-01588-3
  22. Proc Natl Acad Sci U S A. 2024 Apr 02. 121(14): e2313538121
      A major consequence of aging and stress, in yeast to humans, is an increased accumulation of protein aggregates at distinct sites within the cells. Using genetic screens, immunoelectron microscopy, and three-dimensional modeling in our efforts to elucidate the importance of aggregate annexation, we found that most aggregates in yeast accumulate near the surface of mitochondria. Further, we show that virus-like particles (VLPs), which are part of the retrotransposition cycle of Ty elements, are markedly enriched in these sites of protein aggregation. RNA interference-mediated silencing of Ty expression perturbed aggregate sequestration to mitochondria, reduced overall protein aggregation, mitigated toxicity of a Huntington's disease model, and expanded the replicative lifespan of yeast in a partially Hsp104-dependent manner. The results are in line with recent data demonstrating that VLPs might act as aging factors in mammals, including humans, and extend these findings by linking VLPs to a toxic accumulation of protein aggregates and raising the possibility that they might negatively influence neurological disease progression.
    Keywords:  aging; mitochondria; protein aggregation; proteostasis; virus-like particles
    DOI:  https://doi.org/10.1073/pnas.2313538121
  23. J Cell Biol. 2024 Jun 03. pii: e202306022. [Epub ahead of print]223(6):
      Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.
    DOI:  https://doi.org/10.1083/jcb.202306022
  24. Nat Microbiol. 2024 Mar 27.
      Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.
    DOI:  https://doi.org/10.1038/s41564-024-01644-7
  25. Med Sci (Paris). 2024 Mar;40(3): 267-274
      The characterization of the structural and functional organization of eukaryotic cells has revealed the membrane compartments and machinery required for vesicular protein transport. Most proteins essential for intercellular communication contain an N-terminal signal sequence enabling them to be incorporated into the biosynthetic or conventional secretory pathway, in which proteins are sequentially transported through the endoplasmic reticulum (ER) and the Golgi apparatus. However, major research studies have shown the existence of alternative secretory routes that are independent of the ER-Golgi and designated as unconventional secretory pathways. These pathways involve a large number of players that may divert specific compartments from their primary function in favor of secretory roles. The comprehensive description of these processes is therefore of utmost importance to unveil how proteins secreted through these alternative pathways control cell homeostasis or contribute to disease development.
    DOI:  https://doi.org/10.1051/medsci/2024013
  26. Nat Methods. 2024 Mar 26.
      Most proteins are organized in macromolecular assemblies, which represent key functional units regulating and catalyzing most cellular processes. Affinity purification of the protein of interest combined with liquid chromatography coupled to tandem mass spectrometry (AP-MS) represents the method of choice to identify interacting proteins. The composition of complex isoforms concurrently present in the AP sample can, however, not be resolved from a single AP-MS experiment but requires computational inference from multiple time- and resource-intensive reciprocal AP-MS experiments. Here we introduce deep interactome profiling by mass spectrometry (DIP-MS), which combines AP with blue-native-PAGE separation, data-independent acquisition with mass spectrometry and deep-learning-based signal processing to resolve complex isoforms sharing the same bait protein in a single experiment. We applied DIP-MS to probe the organization of the human prefoldin family of complexes, resolving distinct prefoldin holo- and subcomplex variants, complex-complex interactions and complex isoforms with new subunits that were experimentally validated. Our results demonstrate that DIP-MS can reveal proteome modularity at unprecedented depth and resolution.
    DOI:  https://doi.org/10.1038/s41592-024-02211-y
  27. Science. 2024 Mar 29. 383(6690): 1441-1448
      Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.
    DOI:  https://doi.org/10.1126/science.add9528
  28. Elife. 2024 Mar 27. pii: RP89938. [Epub ahead of print]12
      Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)-plasma membrane (PM) and ER-Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus-vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.
    Keywords:  S. cerevisiae; cell biology; membrane contact sites; sphingolipid; tricalbin; vacuolar morphology
    DOI:  https://doi.org/10.7554/eLife.89938
  29. Cell Rep. 2024 Mar 22. pii: S2211-1247(24)00309-7. [Epub ahead of print]43(4): 113981
      Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1β (IL-1β), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1β production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1β production, indicating that IRE1α is required for CT- or CTB-induced IL-1β production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.
    Keywords:  CP: Cell biology; CP: Immunology; IL-1β; IRE1α; Pyrin inflammasome; resident peritoneal macrophages
    DOI:  https://doi.org/10.1016/j.celrep.2024.113981
  30. Nature. 2024 Mar 27.
      Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.
    DOI:  https://doi.org/10.1038/s41586-024-07249-8
  31. Nat Aging. 2024 Mar 22.
      Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.
    DOI:  https://doi.org/10.1038/s43587-024-00598-z
  32. Mol Cell. 2024 Mar 11. pii: S1097-2765(24)00173-4. [Epub ahead of print]
      Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.
    Keywords:  aging; nucleolar stress; nucleolus; ribosomal proteins; ribosomopathy
    DOI:  https://doi.org/10.1016/j.molcel.2024.02.031
  33. J Biol Chem. 2024 Mar 25. pii: S0021-9258(24)01727-7. [Epub ahead of print] 107230
      Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-electron microscopy (cryo-EM). 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved β-grasp fold homologus to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain (NTD) of p97, leading to a partial loss of the cryo-EM density of the NTD of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.
    DOI:  https://doi.org/10.1016/j.jbc.2024.107230
  34. bioRxiv. 2024 Mar 02. pii: 2024.02.27.582387. [Epub ahead of print]
      The recognition and binding of nucleic acids (NAs) by proteins depends upon complementary chemical, electrostatic and geometric properties of the protein-NA binding interface. Structural models of protein-NA complexes provide insights into these properties but are scarce relative to models of unbound proteins. We present a deep learning approach for predicting protein-NA binding given the apo structure of a protein (PNAbind). Our method utilizes graph neural networks to encode spatial distributions of physicochemical and geometric properties of the protein molecular surface that are predictive of NA binding. Using global physicochemical encodings, our models predict the overall binding function of a protein and can discriminate between specificity for DNA or RNA binding. We show that such predictions made on protein structures modeled with AlphaFold2 can be used to gain mechanistic understanding of chemical and structural features that determine NA recognition. Using local encodings, our models predict the location of NA binding sites at the level of individual binding residues. Binding site predictions were validated against benchmark datasets, achieving AUROC scores in the range of 0.92-0.95. We applied our models to the HIV-1 restriction factor APOBEC3G and show that our predictions are consistent with experimental RNA binding data.
    DOI:  https://doi.org/10.1101/2024.02.27.582387
  35. Nat Commun. 2024 Mar 27. 15(1): 2679
      In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.
    DOI:  https://doi.org/10.1038/s41467-024-46770-2
  36. ACS Chem Neurosci. 2024 Mar 25.
      Alzheimer's disease is the most common form of dementia encountered in an aging population. Characteristic amyloid deposits of Aβ peptides in the brain are generated through cleavage of amyloid precursor protein (APP) by γ-secretase, an intramembrane protease. Cryo-EM structures of substrate γ-secretase complexes revealed details of the process, but how substrates are recognized and enter the catalytic site is still largely ignored. γ-Secretase cleaves a diverse range of substrate sequences without a common consensus sequence, but strikingly, single point mutations within the transmembrane domain (TMD) of specific substrates may greatly affect cleavage efficiencies. Previously, conformational flexibility was hypothesized to be the main criterion for substrate selection. Here we review the 3D structure and dynamics of several γ-secretase substrate TMDs and compare them with mutants shown to affect the cleavage efficiency. In addition, we present structural and dynamic data on ITGB1, a known nonsubstrate of γ-secretase. A comparison of biophysical details between these TMDs and changes generated by introducing crucial mutations allowed us to unravel common principles that differ between substrates and nonsubstrates. We identified three motifs in the investigated substrates: a highly flexible transmembrane domain, a destabilization of the cleavage region, and a basic signature at the end of the transmembrane helix. None of these appears to be exclusive. While conformational flexibility on its own may increase cleavage efficiency in well-known substrates like APP or Notch1, our data suggest that the three motifs seem to be rather variably combined to determine whether a transmembrane helix is efficiently recognized as a γ-secretase substrate.
    Keywords:  ITGB1; Intramembrane proteolysis; amyloid precursor protein; notch; nuclear magnetic resonance; γ-secretase
    DOI:  https://doi.org/10.1021/acschemneuro.4c00068