bims-proteo Biomed News
on Proteostasis
Issue of 2025–02–09
forty-six papers selected by
Eric Chevet, INSERM



  1. EMBO J. 2025 Feb 07.
      One way cells control the speed and specificity of protein degradation is by regulating the activity of ubiquitin ligases. Upon proteotoxic stress in yeast, the intrinsically disordered protein Roq1 binds the ubiquitin ligase Ubr1 as a pseudosubstrate, thereby modulating the degradation of substrates of the N-degron pathway and promoting the elimination of misfolded proteins. The mechanism underlying this reprograming of Ubr1 is unknown. Here, we show that Roq1 controls Ubr1 by means of two cooperating multifunctional motifs. The N-terminal arginine and a short hydrophobic motif of Roq1 interact with Ubr1 as part of a heterobivalent binding mechanism. Via its N-terminal arginine, Roq1 regulates the ubiquitination of various N-degron substrates and folded proteins. Via its hydrophobic motif, Roq1 accelerates the ubiquitination of misfolded proteins. These findings reveal how a small, intrinsically disordered protein with a simple architecture engages parallel channels of communication to reprogram a functionally complex ubiquitin ligase.
    Keywords:  Protein Degradation; SHRED; Ubiquitin Ligase Regulation
    DOI:  https://doi.org/10.1038/s44318-025-00375-7
  2. Nat Commun. 2025 Feb 03. 16(1): 1277
      Eukaryotic translation elongation factor 1A (eEF1A) is a highly abundant, multi-domain GTPase. Post-translational steps essential for eEF1A biogenesis are carried out by bespoke chaperones but co-translational mechanisms tailored to eEF1A folding remain unexplored. Here, we use AlphaPulldown to identify Ypl225w (also known as Chp1, Chaperone 1 for eEF1A) as a conserved yeast protein predicted to stabilize the N-terminal, GTP-binding (G) domain of eEF1A against its misfolding propensity, as predicted by computational simulations and validated by microscopy analysis of ypl225wΔ cells. Proteomics and biochemical reconstitution reveal that Ypl225w functions as a co-translational chaperone by forming dual interactions with the eEF1A G domain nascent chain and the UBA domain of ribosome-bound nascent polypeptide-associated complex (NAC). Lastly, we show that Ypl225w primes eEF1A nascent chains for binding to GTP as part of a folding mechanism tightly coupled to chaperone recycling. Our work shows that an ATP-independent chaperone can drive vectorial folding of nascent chains by co-opting G protein nucleotide binding.
    DOI:  https://doi.org/10.1038/s41467-025-56489-3
  3. Mol Cell. 2025 Feb 03. pii: S1097-2765(25)00051-6. [Epub ahead of print]
      E3 ubiquitin ligases (E3s) confer specificity of protein degradation through ubiquitination of substrate proteins. Yet, the vast majority of the >600 human E3s have no known substrates. To identify proteolytic E3-substrate pairs at scale, we developed combinatorial mapping of E3 targets (COMET), a framework for testing the role of many E3s in degrading many candidate substrates within a single experiment. We applied COMET to SCF ubiquitin ligase subunits that mediate degradation of target substrates (6,716 F-box-ORF [open reading frame] combinations) and E3s that degrade short-lived transcription factors (TFs) (26,028 E3-TF combinations). Our data suggest that many E3-substrate relationships are complex rather than 1:1 associations. Finally, we leverage deep learning to predict the structural basis of E3-substrate interactions and probe the strengths and limits of such models. Looking forward, we consider the practicality of transposing this framework, i.e., computational structural prediction of all possible E3-substrate interactions, followed by multiplex experimental validation.
    Keywords:  benchmarking; deep learning; high-throughput screening; machine learning; proteolysis; structure prediction; ubiquitin; ubiquitin ligases
    DOI:  https://doi.org/10.1016/j.molcel.2025.01.016
  4. Trends Cell Biol. 2025 Feb 04. pii: S0962-8924(25)00002-9. [Epub ahead of print]
      Protein misfolding and aggregation in the endoplasmic reticulum (ER) have been causally linked to a variety of human diseases. Two key pathways for eliminating misfolded proteins and aggregates in the ER are ER-associated degradation (ERAD) and ER-phagy, respectively. While both pathways have been well characterized biochemically, our understanding of their physiological relevance and significance remains limited. In recent years, significant advances have been made, including the generation and characterization of various knockout and knockin mouse models, the identification of human disease-associated or -causing variants, and insights into the coordination between ERAD and autophagy in physiological contexts. In this review, we summarize these advancements, highlighting the key roles of a highly conserved suppressor of lin-12-like-hydroxymethyl glutaryl-coenzyme A reductase degradation 1 (SEL1L-HRD1) protein complex of ERAD and ER-phagy in health and disease.
    Keywords:  ER-associated protein degradation (ERAD); ER-phagy; ER-phagy receptors; SEL1L-HRD1; disease variants; substrates
    DOI:  https://doi.org/10.1016/j.tcb.2025.01.002
  5. Nat Cell Biol. 2025 Feb 07.
      Autophagic mechanisms that maintain nuclear envelope homoeostasis are bulwarks to ageing and disease. Here we define a quantitative and ultrastructural timeline of nuclear macroautophagy (nucleophagy) in yeast by leveraging four-dimensional lattice light sheet microscopy and correlative light and electron tomography. Nucleophagy begins with a rapid accumulation of the selective autophagy receptor Atg39 at the nuclear envelope and finishes in ~300 s with Atg39-cargo delivery to the vacuole. Although there are several routes to the vacuole, at least one pathway incorporates two consecutive membrane fission steps: inner nuclear membrane (INM) fission to generate an INM-derived vesicle in the perinuclear space and outer nuclear membrane fission to liberate a double-membraned vesicle to the cytosol. Outer nuclear membrane fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin-like protein 1 (Dnm1), which is recruited to sites of Atg39 accumulation by Atg11. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodelling.
    DOI:  https://doi.org/10.1038/s41556-025-01612-1
  6. bioRxiv. 2025 Jan 20. pii: 2025.01.19.633811. [Epub ahead of print]
      The inner nuclear membrane (INM), a subdomain of the endoplasmic reticulum (ER), sequesters hundreds of transmembrane proteins within the nucleus. We previously found that one INM protein, emerin, can evade the INM by secretory transport to the lysosome, where it is degraded. In this work, we used targeted mutagenesis to identify intrinsic sequences that promote or inhibit emerin's secretory trafficking. By manipulating these sequences across several tag and expression level combinations, we now find that emerin's localization is sensitive to C-terminal GFP tagging. While emerin's long, hydrophobic C-terminal transmembrane domain facilitates trafficking to the lysosome, extending its lumenal terminus with a GFP tag biases the protein toward this pathway. In contrast, we identify a conserved ER retention sequence that stabilizes N- and C-terminally tagged emerin by limiting its lysosomal flux. These findings underscore long-standing concerns about tagging artifacts and reveal novel determinants of tail-anchored INM protein targeting.
    DOI:  https://doi.org/10.1101/2025.01.19.633811
  7. Mol Cell. 2025 Feb 06. pii: S1097-2765(25)00045-0. [Epub ahead of print]85(3): 464-465
      Cytosolic Ca2+ transients are critical signals for autophagy regulation; however, how they translate into functional autophagic events remains unclear. In this issue of Molecular Cell, Zheng et al.1 identify CaMKIIβ as a key player decoding Ca2+ transients at the ER surface to initiate autophagosome formation through the FIP200 complex.
    DOI:  https://doi.org/10.1016/j.molcel.2025.01.011
  8. Nat Commun. 2025 Feb 03. 16(1): 1278
      Assembly of functional ribosomal subunits and successfully delivering them to the translating pool is a prerequisite for protein synthesis and cell growth. In S. cerevisiae, the ribosome assembly factor Reh1 binds to pre-60S subunits at a late stage during their cytoplasmic maturation. Previous work shows that the C-terminus of Reh1 inserts into the polypeptide exit tunnel of the pre-60S subunit. Here, we show that Reh1-bound nascent 60S subunits associate with 40S subunits to form actively translating ribosomes. Using selective ribosome profiling, we found that Reh1-bound ribosomes populate open reading frames near start codons. Reh1-bound ribosomes are also strongly enriched for initiator tRNA, indicating they are associated with early elongation. Using cryo-electron microscopy to image Reh1-bound 80S ribosomes, we found they contain A site peptidyl tRNA, P site tRNA and eIF5A, indicating that Reh1 does not dissociate from 60S until translation elongation. We propose that Reh1 is displaced by the elongating peptide chain, making it the last assembly factor released from the nascent 60S subunit during its initial round of translation.
    DOI:  https://doi.org/10.1038/s41467-025-55844-8
  9. EMBO J. 2025 Feb 05.
      The endosomal pathway is essential for regulating cell signaling and cellular homeostasis. Rab5 positive early endosomes receive proteins from the plasma membrane. Dependent on a ubiquitin mark on the protein, they will be either recycled or sorted into intraluminal vesicles (ILVs) by endosomal sorting complex required for transport (ESCRT) proteins. During endosome maturation Rab5 is replaced by Rab7 on endosomes that are able to fuse with lysosomes to form endolysosomes. However, whether ESCRT-driven ILV formation and Rab5-to-Rab7 conversion are coordinated remains unknown. Here we show that loss of early ESCRTs led to enlarged Rab5 positive endosomes and prohibited Rab conversion. Reduction of ubiquitinated cargo alleviated this phenotype. Moreover, ubiquitinated proteins on the endosomal limiting membrane prevented the displacement of the Rab5 guanine nucleotide exchange factor (GEF) RABX-5 by the GEF for Rab7, SAND-1/CCZ-1. Overexpression of Rab7 could partially overcome this block, even in the absence of SAND-1 or CCZ1, suggesting the presence of a second Rab7 GEF. Our data reveal a hierarchy of events in which cargo corralling by ESCRTs is upstream of Rab conversion, suggesting that ESCRT-0 and ubiquitinated cargo could act as timers that determine the onset of Rab conversion.
    Keywords:   C. elegans ; Endosomes; Live Cell Imaging; Mammalian Cells; Rab GTPases
    DOI:  https://doi.org/10.1038/s44318-025-00367-7
  10. Genes Cells. 2025 Mar;30(2): e70004
      The proteasome is a large multicatalytic complex conserved across eukaryotes that regulates multiple cellular processes through the degradation of ubiquitinated proteins. The proteasome is predominantly localized to the nucleus in proliferating cells and translocates to the cytoplasm in the stationary phase. Sts1 reportedly plays a vital role in the nuclear import of the proteasome during proliferation in yeast Saccharomyces cerevisiae. However, the mechanisms underlying cytoplasmic translocation of the proteasome in the stationary phase remain unknown. Here, we showed that the ubiquitin ligase Hul5 promotes vacuolar sequestration of Sts1 in a catalytic activity-dependent manner and thus suppresses the nuclear import of the proteasome during the stationary phase. We further demonstrated that cytoplasmic translocation of the proteasome plays a vital role in the clearance of ubiquitinated protein aggregates, mitochondrial quality control, and resuming proliferation from cellular quiescence. Our results provide insights into the mechanisms and significance of the cytoplasmic localization of proteasomes in cellular quiescence.
    Keywords:  Hul5; Sts1; proteasome; quiescence; vacuole
    DOI:  https://doi.org/10.1111/gtc.70004
  11. Proc Natl Acad Sci U S A. 2025 Feb 11. 122(6): e2422582122
      Mec1 plays an essential role in both the DNA damage response and glucose starvation-induced autophagy. We recently reported that Mec1 regulates glucose starvation-induced autophagy through its direct binding to Atg13. However, the role of Mec1's kinase activity in autophagy remains unclear. In this study, we demonstrate that the kinase activity of Mec1 is required for glucose starvation-induced autophagy by regulating the phagophore assembly site (PAS) recruitment of Atg9 vesicles. Mechanistic and functional analyses identified Atg9 as a direct phosphorylation substrate of Mec1, with phosphorylation occurring at the S35, T203, and T243 sites. Mutations at these sites reduce the association of Atg9 with Atg17, Atg23, and Atg27, thereby impairing the PAS recruitment of Atg9 vesicles. Notably, we found that the Mec1-Atg13 binding is a prerequisite for the phosphorylation of Atg9 by Mec1. Furthermore, Mec1-mediated phosphorylation of Atg9 is also crucial for the PAS recruitment of Atg9 vesicles in response to DNA damage. We thus propose that Mec1's kinase activity regulates the PAS recruitment of Atg9 vesicles by phosphorylating Atg9 in response to energy stress and DNA damage.
    Keywords:  Atg9; DNA damage–induced autophagy; Mec1; Saccharomyces cerevisiae; glucose starvation–induced autophagy
    DOI:  https://doi.org/10.1073/pnas.2422582122
  12. Science. 2025 Feb 06.
      The class III phosphatidylinositol-3 kinase complexes I and II (PI3KC3-C1 and -C2) have vital roles in macroautophagy and endosomal maturation, respectively. We elucidated a structural pathway of enzyme activation through cryo-EM analysis of PI3KC3-C1. The inactive conformation of the VPS15 pseudokinase stabilizes the inactive conformation, sequestering its N-myristate in the N-lobe of the pseudokinase. Upon activation, the myristate is liberated such that the VPS34 lipid kinase catalyzes PI3P production on membranes. The VPS15 pseudokinase domain binds tightly to guanosine triphosphate (GTP), and stabilizes a web of interactions to autoinhibit the cytosolic complex and to promote the activation upon membrane binding. These findings show in atomistic detail how the VPS34 lipid kinase is activated in the context of a complete PI3K complex.
    DOI:  https://doi.org/10.1126/science.adl3787
  13. J Exp Med. 2025 Mar 03. pii: e20242285. [Epub ahead of print]222(3):
      Bernaleau et al. (https://doi.org/10.1084/jem.20240825) show that CCDC134 located in the ER is required for TLR biogenesis by controlling the N-glycosylation, folding, and stabilization of the ER chaperone Gp96.
    DOI:  https://doi.org/10.1084/jem.20242285
  14. Autophagy. 2025 Feb 07. 1-2
      Selective endoplasmic reticulum (ER) autophagy (reticulophagy) is essential for maintaining ER homeostasis. The E3 ligase AMFR facilitates the ubiquitination of the reticulophagy receptor RETREG1/FAM134B, thereby promoting the dynamic flux of the reticulophagy process. Flaviviruses exploit the ER during their replication cycles, highlighting the importance of ER quantity and accessibility in flavivirus infections. However, the role of reticulophagy in viral replication and the complex mechanisms by which viruses modulate reticulophagy to enhance pathogenicity remain poorly understood. In a recent study, we demonstrate that the Zika virus (ZIKV) hijacks the ER-located E3 ligase AMFR to ubiquitinate NS2A, leading to the degradation of the key reticulophagy receptor RETREG1. This inhibition of the reticulophagy process promotes virus-induced microcephaly in human brain organoids and enhances viral pathogenicity in mouse models. Notably, the AMFR-mediated ubiquitination of ZIKV-NS2A and its functional interaction with RETREG1 are conserved across the NS2A of other flaviviruses, including those from Dengue virus, West Nile virus, and Japanese encephalitis virus.
    Keywords:  FAM134B; NS2A; flavivirus; reticulophagy; ubiquitination
    DOI:  https://doi.org/10.1080/15548627.2025.2457112
  15. bioRxiv. 2025 Jan 22. pii: 2025.01.21.634088. [Epub ahead of print]
      SQSTM1/p62 is a master regulator of the autophagic and ubiquitination pathways of protein degradation and the antioxidant response. p62 functions in these pathways via reversible assembly and sequestration of additional factors into cytoplasmic phase-separated structures termed p62 bodies. The physiological roles of p62 in these various pathways depends on numerous mechanisms for regulating p62 body formation and dynamics that are incompletely understood. Here, we identify a new mechanism for regulation of p62 oligomerization and incorporation into p62 bodies by SHKBP1, a Cullin-3 E3 ubiquitin ligase adaptor, that is independent of its potential functions in ubiquitination. We map a SHKBP1-p62 protein-protein interaction outside of p62 bodies that limits p62 assembly into p62 bodies and affects the antioxidant response by preventing sequestration and degradation of Keap1. These studies provide a non-ubiquitination-based mechanism for an E3 ligase adaptor in regulating p62 phase separation and cellular responses to oxidative stress.
    DOI:  https://doi.org/10.1101/2025.01.21.634088
  16. Proc Natl Acad Sci U S A. 2025 Feb 11. 122(6): e2414045122
      Many proteins have slow folding times in vitro that are physiologically untenable. To combat this challenge, ATP-dependent chaperonins are thought to possess the unique ability to catalyze protein folding. Performing quantitative model selection using protein folding and unfolding data, we here show that short nucleic acids containing G-quadruplex (G4) structure can also catalyze protein folding. Performing the experiments as a function of temperature demonstrates that the G4 reshapes the underlying driving forces of protein folding. As short nucleic acids can catalyze protein folding without the input of ATP, the ability of the cell to fold proteins is far higher than previously anticipated.
    Keywords:  RNA; chaperone; energy landscape; protein folding; quadruplex
    DOI:  https://doi.org/10.1073/pnas.2414045122
  17. EMBO Rep. 2025 Feb 06.
      The SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex plays a protective role against external stress, such as ultraviolet irradiation. The emergence of substrates activates SCF through neddylation, the covalent attachment of ubiquitin-like protein NEDD8 to CUL1. After substrate degradation, SCF is inactivated through deneddylation by COP9-signalosome (CSN), a solo enzyme that can deneddylate SCF. How the activity of CSN and SCF is coordinated within the cell is not fully understood. Here, we find that heat-shock cognate 70 (HSC70) chaperone coordinates SCF and CSN activation dependent on the neddylation status and substrate availability. Under basal conditions and low substrate availability, HCS70 directly enhances CSN deneddylation activity, thereby reducing SCF activity. Under SCF-activated conditions, HSC70 interacts with neddylated SCF and enhances its ubiquitination activity. The alternative interaction between HSC70 and CSN or neddylated SCF is regulated by the presence or absence of SCF substrates. The knockdown of HSC70 decreases SCF-mediated substrate ubiquitination, resulting in vulnerability against ultraviolet irradiation. Our work demonstrates the pivotal role of HSC70 in the alternative activation of CSN deneddylation and SCF substrate ubiquitination, which enables a prompt stress response.
    Keywords:  COP9 Signalosome; HSC70; Proteostasis; SCF Ubiquitin Ligase; Stress Response
    DOI:  https://doi.org/10.1038/s44319-025-00376-x
  18. Cell. 2025 Jan 23. pii: S0092-8674(25)00045-5. [Epub ahead of print]
      The genetic information stored in mRNAs is decoded by ribosomes during mRNA translation. mRNAs are typically translated by multiple ribosomes simultaneously, but it is unclear whether and how the activity of different ribosomes on an mRNA is coordinated. Here, we develop an imaging approach based on stopless-ORF circular RNAs (socRNAs) to monitor translation of individual ribosomes in either monosomes or polysomes with very high resolution. Using experiments and simulations, we find that translating ribosomes frequently undergo transient collisions. However, unlike persistent collisions, such transient collisions escape detection by cellular quality control pathways. Rather, transient ribosome collisions promote productive translation by reducing ribosome pausing on problematic sequences, a process we term ribosome cooperativity. Ribosome cooperativity also reduces recycling of ribosomes by quality control pathways, thus enhancing processive translation. Together, our single-ribosome imaging approach reveals that ribosomes cooperate during translation to ensure fast and efficient translation.
    Keywords:  circRNAs; ribosome collision; single-molecule imaging; translation
    DOI:  https://doi.org/10.1016/j.cell.2025.01.016
  19. Proc Natl Acad Sci U S A. 2025 Feb 11. 122(6): e2411916122
      Misregulation of the activity of GCN2, the kinase that phosphorylates and inactivates translation initiation factor eIF2α, has been implicated in several health disorders, underscoring the need to determine the mechanisms controlling GCN2 activation. During nutrient starvation, increased uncharged tRNA levels trigger GCN1 and GCN20 proteins to mediate the binding of uncharged tRNA to GCN2 to activate the kinase to phosphorylate eIF2α. Under constant conditions, activation of the Neurospora crassa homolog of GCN2, CPC-3, is controlled by the circadian clock. However, how the circadian clock controls the rhythmic activity of CPC-3 was not known. We found that the clock regulates CPC-3 and GCN1 interaction with ribosomes and show that these interactions are necessary for clock regulation of CPC-3 activity. CPC-3 activity rhythms, and the rhythmic interaction of CPC-3 and GCN1 with ribosomes, are abolished in a temperature-sensitive valyl-tRNA synthetase mutant (un-3ts) that has high levels of uncharged tRNAVal at all times of the day. Disrupting the interaction between GCN1 and uncharged tRNA in the absence of GCN20 altered rhythmic CPC-3 activity, indicating that the clock controls the interaction between uncharged tRNA and GCN1. Together, these data support that circadian rhythms in mRNA translation through CPC-3 activity require rhythms in uncharged tRNA levels that drive the rhythmic interaction between CPC-3 and GCN1 with ribosomes. This regulation uncovers a fundamental mechanism to ensure temporal coordination between peak cellular energy levels and the energetically demanding process of mRNA translation.
    Keywords:  circadian clock; eIF2α; ribosome; tRNA synthetase; translation initiation
    DOI:  https://doi.org/10.1073/pnas.2411916122
  20. Science. 2025 Feb 06. eadq2634
      Cells have evolved mechanisms to distribute ~10 billion protein molecules to subcellular compartments where diverse proteins involved in shared functions must assemble. Here, we demonstrate that proteins with shared functions share amino acid sequence codes that guide them to compartment destinations. A protein language model, ProtGPS, was developed that predicts with high performance the compartment localization of human proteins excluded from the training set. ProtGPS successfully guided generation of novel protein sequences that selectively assemble in the nucleolus. ProtGPS identified pathological mutations that change this code and lead to altered subcellular localization of proteins. Our results indicate that protein sequences contain not only a folding code, but also a previously unrecognized code governing their distribution to diverse subcellular compartments.
    DOI:  https://doi.org/10.1126/science.adq2634
  21. Bioorg Chem. 2025 Jan 30. pii: S0045-2068(25)00103-8. [Epub ahead of print]157 108223
      PTEN is an important tumor suppressor protein that is regulated by ubiquitination events which are modulated by deubiquitinases, or enzymes that remove ubiquitin from substrate proteins. As ubiquitinated substrates are beneficial to study deubiquitinase activity and substrate recognition, we have previously developed a semisynthetic strategy to site-specifically install a monoubiquitin on PTEN. This strategy uses a non-natural aminoAla-Cys functionality as a convenient alternative to the synthetically more challenging natural isopeptide linkage. However, the effective processing of this linkage by deubiquitinases other than by the deubiquitinase USP7 has not been evaluated. Therefore, we assessed whether the aminoAla-Cys linked monoubiquitinated PTEN can be processed by other known deubiquitinases. We found that USP10, USP11, and USP15 processed monoubiquitinated PTEN but BAP1 and OTUD3 could not under the conditions tested. This study demonstrates that ubiquitin linked to the aminoAla-Cys functionality is hydrolyzable by members of the USP family deubiquitinases and enables the systematic evaluation of deubiquitinase activities toward monoubiquitinated protein substrates.
    Keywords:  Deubiquitinase; PTEN; Protein Semisynthesis; Ubiquitin
    DOI:  https://doi.org/10.1016/j.bioorg.2025.108223
  22. Nat Commun. 2025 Feb 02. 16(1): 1275
      The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.
    DOI:  https://doi.org/10.1038/s41467-025-56543-0
  23. J Clin Invest. 2025 Feb 03. pii: e168730. [Epub ahead of print]135(3):
      Translational control shapes the proteome and is particularly important in regulating gene expression under stress. A key source of endothelial stress is treatment with tyrosine kinase inhibitors (TKIs), which lowers cancer mortality but increases cardiovascular mortality. Using a human induced pluripotent stem cell-derived endothelial cell (hiPSC-EC) model of sunitinib-induced vascular dysfunction combined with ribosome profiling, we assessed the role of translational control in hiPSC-ECs in response to stress. We identified staphylococcal nuclease and tudor domain-containing protein 1 (SND1) as a sunitinib-dependent translationally repressed gene. SND1 translational repression was mediated by the mTORC1/4E-BP1 pathway. SND1 inhibition led to endothelial dysfunction, whereas SND1 OE protected against sunitinib-induced endothelial dysfunction. Mechanistically, SND1 transcriptionally regulated UBE2N, an E2-conjugating enzyme that mediates K63-linked ubiquitination. UBE2N along with the E3 ligases RNF8 and RNF168 regulated the DNA damage repair response pathway to mitigate the deleterious effects of sunitinib. In silico analysis of FDA-approved drugs led to the identification of an ACE inhibitor, ramipril, that protected against sunitinib-induced vascular dysfunction in vitro and in vivo, all while preserving the efficacy of cancer therapy. Our study established a central role for translational control of SND1 in sunitinib-induced endothelial dysfunction that could potentially be therapeutically targeted to reduce sunitinib-induced vascular toxicity.
    Keywords:  Cancer; Cardiovascular disease; Endothelial cells; Vascular biology
    DOI:  https://doi.org/10.1172/JCI168730
  24. JCI Insight. 2025 02 04. pii: e180507. [Epub ahead of print]
      The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here we demonstrate that ROCK1 regulates B cells differentiation in hostile environments replete with PAMPs (pathogen-associated molecular patterns) and high levels of heme by controlling two key heme-regulated molecules, BACH2 and Heme-regulated eIF2a kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their proinflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTORC1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.
    Keywords:  Aging; Autoimmunity; Cell stress; Immunoglobulins; Immunology; Protein kinases
    DOI:  https://doi.org/10.1172/jci.insight.180507
  25. J Am Chem Soc. 2025 Feb 06.
      Targeted protein degradation (TPD) is a pharmacological strategy that eliminates specific proteins from cells by harnessing cellular proteolytic degradation machinery. In proteasome-dependent TPD, expanding the repertoire of E3 ligases compatible with this approach could enhance the applicability of this strategy across various biological contexts. In this study, we discovered that a somatic mutant of FBXW7, R465C, can be exploited by heterobifunctional compounds for targeted protein degradation. This work demonstrates the potential of utilizing mutant E3 ligases that occur exclusively in diseased cells for TPD applications.
    DOI:  https://doi.org/10.1021/jacs.4c17331
  26. bioRxiv. 2025 Jan 22. pii: 2025.01.21.634079. [Epub ahead of print]
      The voltage-gated sodium channels (VGSC) NaV1.8 and NaV1.7 (NaVs) have emerged as promising and high-value targets for the development of novel, non-addictive analgesics to combat the chronic pain epidemic. In recent years, many small molecule inhibitors against these channels have been developed. The recent successful clinical trial of VX-548, a NaV1.8-selective inhibitor, has spurred much interest in expanding the arsenal of subtype-selective voltage-gated sodium channel therapeutics. Toward that end, we sought to determine whether NaVs are amenable to targeted protein degradation with small molecule degraders, namely proteolysis-targeting chimeras (PROTACs) and molecular glues. Here, we report that degron-tagged NaVs are potently and rapidly degraded by small molecule degraders harnessing the E3 ubiquitin ligases cereblon (CRBN) and Von Hippel Lindau (VHL). Using LC/MS analysis, we demonstrate that PROTAC-mediated proximity between NaV1.8 and CRBN results in ubiquitination on the 2 nd intracellular loop, pointing toward a potential mechanism of action and demonstrating the ability of CRBN to recognize a VGSC as a neosubstrate. Our foundational findings are an important first step toward realizing the immense potential of NaV-targeting degrader analgesics to combat chronic pain.
    DOI:  https://doi.org/10.1101/2025.01.21.634079
  27. bioRxiv. 2025 Jan 20. pii: 2025.01.18.633717. [Epub ahead of print]
      The exclusion of T cells causes immune escape of pancreatic ductal adenocarcinoma (PDA). T cell exclusion is mediated by the interaction between CXCR4 on T cells and its ligand, CXCL12, which is complexed to keratin-19 (KRT19) on the surface of PDA cells. KRT19 secretion by PDA cells is essential to this process but is unusual because KRT19 lacks an endoplasmic reticulum (ER)-directing signal peptide (SP). By using biotinylation by an ER-restricted TurboID system and a split-GFP assay in PDA cells, we demonstrate that KRT19 enters the ER via its "head" domain. Additionally, KRT19 is shown to interact with the signal recognition particle and its secretion is sensitive to canonical protein secretion inhibitors. In vivo, mouse tumors formed with ER-TurboID-expressing PDA cells contain biotinylated KRT19. In contrast, keratin-8 (KRT8), which colocalizes with KRT19 on the surface of PDA cells, does not enter the ER. Rather, KRT8 is externalized via secretory autophagy possibly in a complex with KRT19. Thus, despite lacking a classical SP, PDA cells secrete KRT19 to capture CXCL12 and protect against immune attack.
    Significance Statement: Pancreatic ductal adenocarcinoma (PDA) is resistant to immunotherapy because T cells are excluded from cancer cell nests. Cancer cells capture cancer associated fibroblast sourced CXCL12, which ligates T cell CXCR4, to exclude T cells from cancer cell nests. CXCL12 is captured by cancer cells via the externalization of the normally intracellular intermediate filament keratin-19 (KRT19). We studied the unconventional secretion of KRT19 and found it is secreted by signal peptide independent entry into the endoplasmic reticulum, as well as via secretory autophagy. Thus, PDA externalized immunosuppressive KRT19 through two unconventional means.
    DOI:  https://doi.org/10.1101/2025.01.18.633717
  28. JCI Insight. 2025 Feb 06. pii: e181570. [Epub ahead of print]
      The proof-of-principle of the therapeutic potential of heat shock protein 47 (HSP47) for diseases characterized by defects in the collagen I synthesis is here proved in osteogenesis imperfecta (OI), a prototype of collagen disorders. Most of the OI mutations delay collagen I chains folding, increasing their exposure to post translational modifications that affect collagen secretion and impact extracellular matrix fibrils assembly. As model, we used primary fibroblasts from OI individuals with defect in the collagen prolyl-3-hydroxylation complex, since are characterized by the synthesis of homogeneously overmodified collagen molecules. We demonstrated that the exogenous recombinant HSP47 (rHSP47) is uptaken by the cells and localizes at the ER exit sites and ER Golgi intermediate compartment. rHSP47 treatment increased collagen secretion, reduced collagen post translational modifications and intracellular collagen retention and ameliorated the general ER proteostasis, leading to improved cellular homeostasis and vitality. These positive changes were also mirrored by an increased collagen content in the OI matrix. A mutation dependent effect was found in fibroblasts from three probands with collagen I mutations, for which rHSP47 was effective only in cells with the most N-term defect. A beneficial effect on bone mineralization was proved in vivo in the zebrafish p3h1-/- OI model.
    Keywords:  Bone disease; Cell biology; Collagens; Therapeutics
    DOI:  https://doi.org/10.1172/jci.insight.181570
  29. Biol Open. 2025 Feb 15. pii: bio061644. [Epub ahead of print]14(2):
      The autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are the two major intracellular proteolytic systems that mediate protein turnover in eukaryotes. Although a crosstalk exists between these two systems, it is still unclear how UPS and ALP interact in vivo. Here, we investigated how impaired function of the proteasome-associated deubiquitinating enzyme (DUB) Uchl5/UBH-4 affects autophagy in human cells and in a multicellular organism. We show that downregulation of Uchl5 by siRNA reduces autophagy by partially blocking the fusion of autophagosomes with the lysosomes in HeLa cells, which is similar to a previously reported role of the proteasome-associated DUB Usp14 on autophagy. However, exposure of Caenorhabditis elegans to ubh-4 or usp-14 RNAi, or to their pharmacological inhibitors, results in diverse effects on numbers of autophagosomes and autolysosomes, without blocking the lysosomal fusion, in the intestine, hypodermal seam cells and the pharynx. Our results reveal that impairment of Uchl5/UBH-4 and Usp14 affects autophagy in a tissue context manner. A deeper insight into the interplay between UPS and ALP in various tissues in vivo has the potential to promote development of therapeutic approaches for disorders associated with proteostasis dysfunction.
    Keywords:  Autolysosome; Autophagosome; Autophagy; Deubiquitinating enzyme (DUB); Proteasome-associated DUBs; Tissue specificity; Ubiquitin-proteasome system
    DOI:  https://doi.org/10.1242/bio.061644
  30. FEBS J. 2025 Feb 05.
      RING-type E3 ubiquitin ligases promote ubiquitylation by stabilising an active complex between a ubiquitin-loaded E2-conjugating enzyme and a protein substrate. To fulfil this function, the E3 ubiquitin-protein ligase SIAH1 and other SINA/SIAH subfamily RING-type E3 ligases employ an N-terminal catalytic RING domain and a C-terminal substrate-binding domain (SBD), separated by two zinc fingers. Here, we present the first crystal structure of the RING domain of human SIAH1, together with an adjacent zinc finger, revealing a potential RING dimer, which was validated in solution using static light scattering. RING dimerisation contributes to the E3 ligase activity of SIAH1 both in vitro and in cells. Moreover, as the RING domain is the second element, after the SBD, to independently favour homodimerisation within SINA/SIAH E3 ligases, we propose that alternating RING:RING and SBD:SBD interactions organise multiple copies of a SINA/SIAH protein into a higher-order homomultimer. In line with this hypothesis, fluorescently tagged full-length human SIAH1, human SIAH2 and fruit fly SINA show cytoplasmic clusters in human cells, whereas their distribution becomes more diffuse when RING dimerisation is disabled. The wild-type (WT) form of SIAH1, but not its RING dimerisation mutant, colocalises with aggregated synphilin-1A under proteasomal inhibition, suggesting that SIAH1 multimerisation might contribute to its reported preference for aggregated or multimeric substrates.
    Keywords:  E3 ubiquitin ligase; RING domain; SIAH1; protein multimerisation; ubiquitylation
    DOI:  https://doi.org/10.1111/febs.70000
  31. Sci Adv. 2025 Feb 07. 11(6): eads5255
      ESCRT-III proteins assemble into composite polymers that undergo stepwise changes in composition and structure to deform membranes across the tree of life. Here, using a phylogenetic analysis, we demonstrate that the two endosomal sorting complex required for transport III (ESCRT-III) proteins present in eukaryote's closest Asgard archaeal relatives are evolutionarily related to the B- and A-type eukaryotic paralogs that initiate and execute membrane remodeling, respectively. We show that Asgard ESCRT-IIIB assembles into parallel arrays on planar membranes to initiate membrane deformation, from where it recruits ESCRT-IIIA to generate composite polymers. Last, we show that Asgard ESCRT-IIIA is able to remodel membranes into tubes as a likely prelude to scission. Together, these data reveal a set of conserved principles governing ESCRT-III-dependent membrane remodeling that first emerged in a two-component ESCRT-III system in archaea.
    DOI:  https://doi.org/10.1126/sciadv.ads5255
  32. Mol Cell. 2025 Feb 06. pii: S1097-2765(25)00036-X. [Epub ahead of print]85(3): 638-651.e9
      Mitochondrial heat shock proteins and co-chaperones play crucial roles in maintaining proteostasis by regulating unfolded proteins, usually without specific target preferences. In this study, we identify a DNAJC-type co-chaperone: T cell activation inhibitor, mitochondria (TCAIM), and demonstrate its specific binding to α-ketoglutarate dehydrogenase (OGDH), a key rate-limiting enzyme in mitochondrial metabolism. This interaction suppresses OGDH function and subsequently reduces carbohydrate catabolism in both cultured cells and murine models. Using cryoelectron microscopy (cryo-EM), we resolve the human OGDH-TCAIM complex and reveal that TCAIM binds to OGDH without altering its apo structure. Most importantly, we discover that TCAIM facilitates the reduction of functional OGDH through its interaction, which depends on HSPA9 and LONP1. Our findings unveil a role of the mitochondrial proteostasis system in regulating a critical metabolic enzyme and introduce a previously unrecognized post-translational regulatory mechanism.
    Keywords:  DNAJC; OGDH; TCAIM; charperon; metabolism; mitochondria; protein degradation; protein interaction; single-particle cryo-EM; α-ketoglutarate dehydrogenase
    DOI:  https://doi.org/10.1016/j.molcel.2025.01.006
  33. Cell Stress Chaperones. 2025 Jan 29. pii: S1355-8145(25)00002-1. [Epub ahead of print]
      Heat-shock protein 90 (Hsp90) is an ancient and multifaceted protein-folding machine essential for most organisms. The past 40 years have uncovered remarkable complexity in the regulation and function of Hsp90, which dwarfs in sophistication most other machines in the cell. Here, we propose four analogies to illustrate Hsp90's sophistication: a multifunctional Swiss Army knife, an automobile engine and its controls, a switchboard acting as a hub and directing signals, and an orchestra conductor setting the tempo of a symphony. Although each of these analogies represents some key Hsp90 activities, none of them captures the entirety of Hsp90's complexity. Together, these roles enable Hsp90 to support both homeostasis and differentiation, both cellular stability and adaptability. At the 11th International Conference on the Hsp90 Chaperone Machine, the consensus was that to understand this major guardian of proteostasis, we need to study how the many facets of Hsp90's function influence each other. We hope that these analogies will help to conceptually integrate the many roles of Hsp90 in proteostasis and help the field develop the practical applications of Hsp90 modulators.
    DOI:  https://doi.org/10.1016/j.cstres.2025.01.002
  34. Nature. 2025 Feb 05.
      Synthetic lethality exploits the genetic vulnerabilities of cancer cells to enable a targeted, precision approach to treat cancer1. Over the past 15 years, synthetic lethal cancer target discovery approaches have led to clinical successes of PARP inhibitors2 and ushered several next-generation therapeutic targets such as WRN3, USP14, PKMYT15, POLQ6 and PRMT57 into the clinic. Here we identify, in human cancer, a novel synthetic lethal interaction between the PELO-HBS1L and SKI complexes of the mRNA quality control pathway. In distinct genetic contexts, including 9p21.3-deleted and high microsatellite instability (MSI-H) tumours, we found that phenotypically destabilized SKI complex leads to dependence on the PELO-HBS1L ribosomal rescue complex. PELO-HBS1L and SKI complex synthetic lethality alters the normal cell cycle and drives the unfolded protein response through the activation of IRE1, as well as robust tumour growth inhibition. Our results indicate that PELO and HBS1L represent novel therapeutic targets whose dependence converges upon SKI complex destabilization, a common phenotypic biomarker in diverse genetic contexts representing a significant population of patients with cancer.
    DOI:  https://doi.org/10.1038/s41586-024-08398-6
  35. J Cell Biol. 2025 Apr 03. pii: e202405002. [Epub ahead of print]224(4):
      Vacuolar protein sorting 41 (VPS41), a component of the homotypic fusion and protein sorting (HOPS) complex for lysosomal fusion, is essential for the trafficking of lysosomal membrane proteins via lysosome-associated membrane protein (LAMP) carriers from the trans-Golgi network (TGN) to endo/lysosomes. However, the molecular mechanisms underlying this pathway and VPS41's role herein remain poorly understood. Here, we investigated the effects of ectopically localizing VPS41 to mitochondria on LAMP distribution. Using electron microscopy, we identified that mitochondrial-localized VPS41 recruited LAMP1- and LAMP2A-positive vesicles resembling LAMP carriers. The retention using selective hooks (RUSH) system further revealed that newly synthesized LAMPs were specifically recruited by mitochondrial VPS41, a function not shared by other HOPS subunits. Notably, we identified the small GTPase Arl8b as a critical factor for LAMP carrier trafficking. Arl8b was present on LAMP carriers and bound to the WD40 domain of VPS41, enabling their recruitment. These findings reveal a unique role of VPS41 in recruiting TGN-derived LAMP carriers and expand our understanding of VPS41-Arl8b interactions beyond endosome-lysosome fusion, providing new insights into lysosomal trafficking mechanisms.
    DOI:  https://doi.org/10.1083/jcb.202405002
  36. Nat Commun. 2025 Feb 04. 16(1): 1094
      UDP-GlcNAc serves as a building block for glycosaminoglycan (GAG) chains in cartilage proteoglycans and simultaneously acts as a substrate for O-GlcNAcylation. Here, we show that transporters for UDP-GlcNAc to the endoplasmic reticulum (ER) and Golgi are significantly downregulated in osteoarthritic cartilage, leading to increased cytosolic UDP-GlcNAc and O-GlcNAcylation in chondrocytes. Mechanistically, upregulated O-GlcNAcylation governs the senescence-associated secretory phenotype (SASP) by stabilizing GATA4 via O-GlcNAcylation at S406, which compromises its degradation by p62-mediated selective autophagy. Elevated O-GlcNAcylation in the superficial layer of osteoarthritic cartilage coincides with increased GATA4 levels. The topical deletion of Gata4 in this cartilage layer ameliorates post-traumatic osteoarthritis (OA) in mice while inhibiting O-GlcNAc transferase mitigates OA by decreasing GATA4 levels. Excessive glucosamine-induced O-GlcNAcylation stabilizes GATA4 in chondrocytes and exacerbates post-traumatic OA in mice. Our findings elucidate the role of UDP-GlcNAc compartmentalization in regulating secretory pathways associated with chronic joint inflammation, providing a senostatic strategy for the treatment of OA.
    DOI:  https://doi.org/10.1038/s41467-024-55085-1
  37. Nat Commun. 2025 Feb 04. 16(1): 1343
      The leukocyte integrin LFA1 is indispensable for immune responses, orchestrating lymphocyte trafficking and adhesion. While LFA1 activation induces LFA1 clustering at the cell contact surface via outside-in signaling, the regulatory mechanisms remain unclear. Here, we uncovered a previously hidden function of the autophagosome component LC3 beyond its role in autophagy by bridging two seemingly unrelated pathways: LFA1 transport and autophagosome transport. LFA1 clusters co-trafficked with LC3, facilitating LFA1 accumulation at the contact surface. LC3b knockout decreased lymphocyte adhesiveness. LFA1 activation did not induce autophagy, whereas it increased mTOR and AMPK activity. LFA1-dependent AMPK activation enhances LFA1 and LC3 clustering and adhesion. Inhibiting Mst1 kinase-mediated LC3 phosphorylation promoted LC3-mediated LFA1 recruitment to the contact surface through direct interaction with RAPL, uncovering an unprecedented integrin recruitment route. These findings uncover a function of LC3 and expand our understanding of lymphocyte regulation via LFA1.
    DOI:  https://doi.org/10.1038/s41467-025-56631-1
  38. Proc Natl Acad Sci U S A. 2025 Feb 11. 122(6): e2322412122
      Peptides can bind to specific sites on larger proteins and thereby function as inhibitors and regulatory elements. Peptide fragments of larger proteins are particularly attractive for achieving these functions due to their inherent potential to form native-like binding interactions. Recently developed experimental approaches allow for high-throughput measurement of protein fragment inhibitory activity in living cells. However, it has thus far not been possible to predict de novo which of the many possible protein fragments bind to protein targets, let alone act as inhibitors. We have developed a computational method, FragFold, that employs AlphaFold to predict protein fragment binding to full-length proteins in a high-throughput manner. Applying FragFold to thousands of fragments tiling across diverse proteins revealed peaks of predicted binding along each protein sequence. Comparisons with experimental measurements establish that our approach is a sensitive predictor of fragment function: Evaluating inhibitory fragments from known protein-protein interaction interfaces, we find 87% are predicted by FragFold to bind in a native-like mode. Across full protein sequences, 68% of FragFold-predicted binding peaks match experimentally measured inhibitory peaks. Deep mutational scanning experiments support the predicted binding modes and uncover superior inhibitory peptides in high throughput. Further, FragFold is able to predict previously unknown protein binding modes, explaining prior genetic and biochemical data. The success rate of FragFold demonstrates that this computational approach should be broadly applicable for discovering inhibitory protein fragments across proteomes.
    Keywords:  FragFold; deep mutational scanning; inhibitory peptides; massively parallel; protein interactions
    DOI:  https://doi.org/10.1073/pnas.2322412122
  39. Nat Commun. 2025 Feb 07. 16(1): 1445
      The complexity of the cellular proteome is massively expanded by a repertoire of chemically distinct reversible post-translational modifications (PTMs) that control protein localisation, interactions, and function. The temporal and spatial control of these PTMs is central to organism physiology, and mis-regulation of PTMs is a hallmark of many diseases. Here we present an approach to manipulate PTMs on target proteins using nanobodies fused to enzymes that control these PTMs. Anti-GFP nanobodies fused to thioesterases (which depalmitoylate protein cysteines) depalmitoylate GFP tagged substrates. A chemogenetic approach to enhance nanobody affinity for its target enables temporal control of target depalmitoylation. Using a thioesterase fused to a nanobody directed against the Ca(v)1.2 beta subunit we reduce palmitoylation of the Ca(v)1.2 alpha subunit, modifying the channel's voltage dependence and arrhythmia susceptibility in stem cell derived cardiac myocytes. We conclude that nanobody enzyme chimeras represent an approach to specifically manipulate PTMs, with applications in both the laboratory and the clinic.
    DOI:  https://doi.org/10.1038/s41467-025-56716-x
  40. Nat Cell Biol. 2025 Feb 04.
      Oncogenic protein dosage is tightly regulated to enable cancer formation but how this is regulated by translational control remains unknown. The Myc oncogene is a paradigm of an exquisitely regulated oncogene and a driver of pancreatic ductal adenocarcinoma (PDAC). Here we use a CRISPR interference screen in PDAC cells to identify activators of selective MYC translation. The top hit, the RNA-binding protein RBM42, is highly expressed in PDAC and predicts poor survival. We show that RBM42 binds and selectively regulates the translation of MYC and a precise suite of pro-oncogenic transcripts, including JUN and EGFR. Mechanistically, we find that RBM42 binds and remodels the MYC 5' untranslated region structure, facilitating the formation of the translation pre-initiation complex. Importantly, RBM42 is necessary for PDAC tumorigenesis in a Myc-dependent manner in vivo. This work transforms the understanding of the translational code in cancer and illuminates therapeutic openings to target the expression of oncogenes.
    DOI:  https://doi.org/10.1038/s41556-024-01604-7
  41. Cancer Res. 2025 Feb 04.
      Ferroptosis inducers have shown therapeutic potential in prostate cancer (PCa), but tumor heterogeneity poses a barrier to their efficacy. Distinguishing the regulators orchestrating metabolic crosstalk between cancer cells could shed light on therapeutic strategies to more robustly activate ferroptosis. Here, we found that aberrant accumulation of jumonji domain containing 6 (JMJD6) proteins correlated with poorer prognosis of PCa patients. Mechanistically, PCa-associated speckle type BTB/POZ protein (SPOP) mutants impaired the proteasomal degradation of JMJD6 proteins. Elevated JMJD6 and ATF4 coordinated enhancer-promoter loop interactions to stimulate the glutathione biosynthesis pathway. Independent of androgen receptor, JMJD6 recruited mediator subunits (Med1/14) to assemble de novo enhancers mapping to pivotal genes associated with glutathione metabolism, including SLC7A11, GCLM, ME1, and others. SPOP mutations thus induced intrinsic resistance to ferroptosis, dependent on enhanced JMJD6-ATF4 activity. Consequently, targeting JMJD6 rendered SPOP-mutated PCa selectively sensitive to ferroptosis. The JMJD6 antagonist SKLB325 synergized with erastin in multiple pre-clinical PCa models. Together, this study identifies JMJD6 as a druggable vulnerability in SPOP-mutated PCa to increase sensitivity to ferroptosis inducers.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-23-2796
  42. Proc Natl Acad Sci U S A. 2025 Feb 11. 122(6): e2417526122
      The two-line hybrid rice system, a cutting-edge hybrid rice breeding technology, has greatly boosted global food security. In thermo-sensitive genic male sterile (TGMS) lines, the critical sterility-inducing temperature (CSIT; the temperature at which TGMS lines change from male fertile to complete male sterile) acts as a key threshold. We recently uncovered that thermo-sensitive genic male sterility 5 (tms5), a sterile locus presenting in over 95% of TGMS lines, leads to the overaccumulation of 2',3'-cyclic phosphate (cP)-ΔCCA-tRNAs and a deficiency of mature tRNAs, which underlies the molecular mechanism of tms5-mediated TGMS. However, there are a few reports on the regulatory mechanism controlling CSIT. Here, we identified a suppressor of tms5, an amino acid substitution (T552I) in the rice Rqc2 (ribosome-associated quality control 2), increases the CSIT in tms5 lines through its C-terminal alanine and threonine modification (CATylation) activity. This substitution alters tRNA selectivity, leading to the recruitment of different tRNAs to the A-site of ribosome and CATylation rate by OsRqc2 during ribosome-associated quality control (RQC), a process that rescues stalled ribosomes and degrades abnormal nascent chains during translational elongation. Further, the mutation restores the levels of mature tRNA-Ser/Ile to increase the CSIT of tms5 lines. Our findings reveal the origin of overaccumulated cP-ΔCCA-tRNAs in tms5 lines, further deepening our understanding of the regulatory network in governing CSIT of TGMS lines containing tms5.
    Keywords:  C-terminal alanine and threonine modification (CATylation); OsRqc2; critical sterility-inducing temperature (CSIT); ribosome-associated quality control (RQC); tRNA
    DOI:  https://doi.org/10.1073/pnas.2417526122
  43. Elife. 2025 Feb 07. pii: RP95828. [Epub ahead of print]13
      Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a 'torn bag mechanism'. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.
    Keywords:  amphisome; autophagy; biogenesis; cell biology; exosomes; extracellular vesicles; human; mouse; rat; secretion
    DOI:  https://doi.org/10.7554/eLife.95828
  44. RSC Chem Biol. 2025 Jan 28.
      Here, we present a novel strategy that integrates genetic-code expansion and proximity-induced crosslinking to achieve site-specific in vivo SUMOylation. This approach involves incorporating the unnatural amino acid 2-chloroacetyl-Nε-lysine (ClAcK) into the target protein using MmFAcKRS1, a previously reported pyrrolysyl-tRNA synthetase mutant that we have repurposed for ClAcK incorporation. Once incorporated, ClAcK can be specifically targeted to react with a cysteine engineered at the C-terminus of SUMO variants leading to a chemically SUMOylated protein. This reaction is proximity-induced, and preferentially promoted when the two reactive groups are in close spatial proximity. We therefore leverage the natural affinity of SUMO for SUMO-interacting motifs (SIMs) on target proteins to generate the targeted SUMO conjugation. Using this approach, site-specific SUMO-conjugates have been produced for two distinct proteins in cells, thus demonstrating its potential as a strategy for helping to dissect the role of SUMOylation in its native cellular context.
    DOI:  https://doi.org/10.1039/d4cb00135d
  45. Commun Chem. 2025 Feb 06. 8(1): 34
      Kinases are attractive drug targets, but the design of highly selective kinase inhibitors remains challenging. Selectivity may be evaluated against a panel of kinases, or - preferred - in a complex proteome. Probes that allow photoaffinity-labeling of their targets can facilitate this process. Here, we report photoaffinity probes based on the imidazopyrazine scaffold, which is found in several kinase inhibitors and drugs or drug candidates. By chemical proteomics experiments, we find a range of off-targets, which vary between the different probes. In silico analysis suggests that differences between probes may be related to the size, spatial arrangement and rigidity of the imidazopyrazine and its substituent at the 1-position.
    DOI:  https://doi.org/10.1038/s42004-025-01436-y
  46. Cytotechnology. 2025 Apr;77(2): 54
      The long-term treatment of malignancies, particularly brain tumors, is challenged by abnormal protein expression and drug resistance. In terms of potency, selectivity, and overcoming drug resistance, Proteolysis Targeting Chimeras (PROTACs), a cutting-edge method used to selectively degrade target proteins, beats traditional inhibitors. This review summarizes recent research on using PROTACs as a therapeutic strategy for brain tumors, focusing on their mechanism, benefits, limitations, and the need for optimization. The review draws from a comprehensive search of peer-reviewed literature, scientific databases, and clinical trial databases. Articles published up to the knowledge cutoff date up to 14 April 2023 were included. Inclusion criteria covered PROTAC-based brain tumor therapies, including preclinical and early clinical studies, with no restrictions on design or publication type. We included studies using in vitro, in vivo brain tumor models, and human subjects. Eligible treatments involved PROTACs targeting proteins linked to brain tumor progression. We evaluated the selected studies for methodology, including design, sample size, and data analysis techniques. A narrative synthesis summarized key outcomes and trends in PROTAC-based brain tumor therapy. Recent research shows PROTACs selectively degrade brain tumor-related proteins with minimal off-target effects. They offer enhanced potency, selectivity, and the ability to combat resistance compared to traditional inhibitors. PROTACs hold promise for brain tumor treatment offering advantages over traditional inhibitors, but more research is needed to refine their mechanisms, efficacy, and safety. Larger-scale trials and translational studies are essential for assessing their clinical utility.
    Keywords:  Brain tumor; Cancer; Drug resistance; E3 ligase; PROTACS (proteolysis targeting chimeras); Proteasome; Ubiquitin
    DOI:  https://doi.org/10.1007/s10616-025-00716-8