bims-rebvin Biomed News
on Redox biology and metabolism in viral infections
Issue of 2023–02–26
five papers selected by
Alexander Ivanov, Engelhardt Institute of Molecular Biology



  1. Biomedicines. 2023 Jan 19. pii: 271. [Epub ahead of print]11(2):
      Hepatitis C virus (HCV) infection represents the major cause of chronic liver disease, leading to a wide range of hepatic diseases, including cirrhosis and hepatocellular carcinoma. It is the leading indication for liver transplantation worldwide. In addition, there is a growing body of evidence concerning the role of HCV in extrahepatic manifestations, including immune-related disorders and metabolic abnormalities, such as insulin resistance and steatosis. HCV depends on its host cells to propagate successfully, and every aspect of the HCV life cycle is closely related to human lipid metabolism. The virus circulates as a lipid-rich particle, entering the hepatocyte via lipoprotein cell receptors. It has also been shown to upregulate lipid biosynthesis and impair lipid degradation, resulting in significant intracellular lipid accumulation (steatosis) and circulating hypocholesterolemia. Patients with chronic HCV are at increased risk for hepatic steatosis, dyslipidemia, and cardiovascular disease, including accelerated atherosclerosis. This review aims to describe different aspects of the HCV viral life cycle as it impacts host lipoproteins and lipid metabolism. It then discusses the mechanisms of HCV-related hepatic steatosis, hypocholesterolemia, and accelerated atherosclerosis.
    Keywords:  atherosclerosis; cholesterol; hepatitis C; lipid metabolism; steatosis
    DOI:  https://doi.org/10.3390/biomedicines11020271
  2. Antioxidants (Basel). 2023 Feb 02. pii: 354. [Epub ahead of print]12(2):
      Influenza A virus infection induces the production of excessive reactive oxygen species (ROS). Overproduction of ROS can overwhelm the antioxidant defense system, leading to increasing intensive oxidative stress. However, antioxidant defense against oxidative damage induced by influenza A virus infection, and in particular the significance of the SOD3 response in the pathogenesis of influenza virus infection, has not been well characterized. Here, we investigated the potential role of SOD3 in resistance to influenza A virus infection. In this study, SOD3, as an important antioxidant enzyme, was shown to be highly elevated in A549 cells following influenza A virus infection. Furthermore, inhibition of SOD3 impacted viral replication and virulence. We found that SOD3 disrupts IAV replication by impairing the synthesis of vRNA, whereas it did not affect viral ribonucleoprotein nuclear export. In addition, overexpression of SOD3 greatly reduced the levels of ROS caused by influenza A virus infection, regulated the inflammatory response to virus infection by inhibiting the phosphorylation of p65 of the NF-κB signaling pathway, and inhibited virus-induced apoptosis to a certain extent. Taken together, these findings indicate that SOD3 is actively involved in influenza A virus replication. Pharmacological modulation or targeting of SOD3 may pave the way for a novel therapeutic approach to combating influenza A virus infection.
    Keywords:  ROS; SOD3; inflammatory response; influenza A virus; replication
    DOI:  https://doi.org/10.3390/antiox12020354
  3. J Leukoc Biol. 2023 Feb 01. 113(2): 164-190
      Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
    Keywords:  antiviral responses; immunometabolism; macrophage; mitochondria; pathogen-associated molecular patterns; pattern recognition receptors
    DOI:  https://doi.org/10.1093/jleuko/qiac011
  4. Acta Pharm Sin B. 2023 Jan;13(1): 174-191
      The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.
    Keywords:  G6PD; Influenza; Multi-targeting; NF-κB; Neuraminidase; Nrf2; Reactive oxygen species; Vitis vinifera L.; Vitisin B
    DOI:  https://doi.org/10.1016/j.apsb.2022.07.001
  5. Cell Commun Signal. 2023 Feb 24. 21(1): 42
      Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional factor widely expressed among immune, epithelial, endothelial and stromal cells in barrier tissues. It can be activated by small molecules provided by pollutants, microorganisms, food, and metabolism. It has been demonstrated that AHR plays an important role in modulating the response to many microbial pathogens, and the abnormal expression of AHR signaling pathways may disrupt endocrine, cause immunotoxicity, and even lead to the occurrence of cancer. Most humans are infected with at least one known human cancer virus. While the initial infection with these viruses does not cause major disease, the metabolic activity of infected cells changes, thus affecting the activation of oncogenic signaling pathways. In the past few years, lots of studies have shown that viral infections can affect disease progression by regulating the transmission of multiple signaling pathways. This review aims to discuss the potential effects of virus infections on AHR signaling pathways so that we may find a new strategy to minimize the adverse effects of the AHR pathway on diseases. Video Abstract.
    Keywords:  Aryl hydrocarbon receptor; Signaling pathway; Virus infections
    DOI:  https://doi.org/10.1186/s12964-023-01058-8