bims-rebvin Biomed News
on Redox biology and metabolism in viral infections
Issue of 2023–03–26
six papers selected by
Alexander Ivanov, Engelhardt Institute of Molecular Biology



  1. bioRxiv. 2023 Mar 09. pii: 2023.03.07.531609. [Epub ahead of print]
      Influenza A (IAV) and SARS-CoV-2 (SCV2) viruses represent an ongoing threat to public health. Both viruses target the respiratory tract, which consists of a gradient of cell types, receptor expression, and temperature. Environmental temperature has been an un-derstudied contributor to infection susceptibility and understanding its impact on host responses to infection could help uncover new insights into severe disease risk factors. As the nasal passageways are the initial site of respiratory virus infection, in this study we investigated the effect of temperature on host responses in human nasal epithelial cells (hNECs) utilizing IAV and SCV2 in vitro infection models. We demonstrate that temperature affects SCV2, but not IAV, viral replicative fitness and that SCV2 infected cultures are slower to mount an infection-induced response, likely due to suppression by the virus. Additionally, we show that that temperature not only changes the basal transcriptomic landscape of epithelial cells, but that it also impacts the response to infection. The induction of interferon and other innate immune responses were not drastically affected by temperature, suggesting that while the baseline antiviral response at different temperatures remains consistent, there may be metabolic or signaling changes that affect how well the cultures are able to adapt to new pressures such as infection. Finally, we show that hNECs respond differently to IAV and SCV2 infection in ways that give insight into how the virus is able to manipulate the cell to allow for replication and release. Taken together, these data give new insight into the innate immune response to respiratory infections and can assist in identifying new treatment strategies for respiratory infections.
    DOI:  https://doi.org/10.1101/2023.03.07.531609
  2. Methods Mol Biol. 2023 ;2643 309-319
      Peroxisomes have recently been shown to play important roles in the context of viral infections. However, further and more detailed studies should be performed to unravel the specific mechanisms involved. The analysis of the relevance of particular peroxisomal components, such as peroxisomal proteins, for viral infections can be performed by comparing the production of new virus particles in the absence and presence of those specific components. Different methodologies are used to quantify the production of infectious virus particles, depending on the virus, cell type, and the specific characteristics of the viral infection to be analyzed. Here we provide a detailed protocol to study the importance of a putative peroxisomal protein on infection by viruses that induce the death of their host cells. We use the influenza A virus (IAV) infection in A549 cells as a model, and the quantification of the newly produced infectious virus particles is performed by a plaque assay.
    Keywords:  Infectivity; Influenza A virus; Mammalian cells; Peroxisomes; Plaque Assay; Viral infection; Viruses
    DOI:  https://doi.org/10.1007/978-1-0716-3048-8_21
  3. Microbiol Spectr. 2023 Mar 20. e0422522
      The endoplasmic reticulum (ER) stress response is a highly conserved stress-defense mechanism and activates the adaptive unfolded protein response (UPR) to mitigate imbalance. The ER stress-activated signaling pathways can also trigger autophagy to facilitate cellular repair. Bovine viral diarrhea virus (BVDV) utilizes the host cellular ER as the primary site of the life cycle. However, the interplay between cellular ER stress and BVDV replication remains unclear. This report reveals that cytopathic (cp) and noncytopathic (ncp) BVDV have distinct strategies to regulate UPR mechanisms and ER stress-mediated autophagy for their own benefit. Immunoblot analysis revealed that cp and ncp BVDV differentially regulated the abundance of ER chaperone GRP78 for viral replication, while the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α)-activating transcription factor 4 (ATF4) pathway of the UPR was switched on at different stages of infection. Pretreatment with ER stress inducer promoted virion replication, but RNA interference (RNAi) knockdown of ATF4 in BVDV-infected cells significantly attenuated BVDV infectivity titers. More importantly, the effector ATF4 activated by cp BVDV infection translocated into the nucleus to mediate autophagy, but ATF4 was retained in the cytoplasm during ncp BVDV infection. In addition, we found that cp BVDV core protein was localized in the ER to induce ER stress-mediated autophagy. Overall, the potential therapeutic target ATF4 may contribute to the global eradication campaign of BVDV. IMPORTANCE The ER-tropic viruses hijack the host cellular ER as the replication platform of the life cycle, which can lead to strong ER stress. The UPR and related transcriptional cascades triggered by ER stress play a crucial role in viral replication and pathogenesis, but little is known about these underlying mechanisms. Here, we report that cytopathic and noncytopathic BVDV use different strategies to reprogram the cellular UPR and ER stress-mediated autophagy for their own advantage. The cytopathic BVDV unconventionally downregulated the expression level of GRP78, creating perfect conditions for self-replication via the UPR, and the noncytopathic BVDV retained ATF4 in the cytoplasm to provide an advantage for its persistent infection. Our findings provide new insights into exploring how BVDV and other ER-tropic viruses reprogram the UPR signaling pathway in the host cells for replication and reveal the attractive host target ATF4 for new antiviral agents.
    Keywords:  ER stress response; UPR; autophagy; bovine viral diarrhea virus; viral replication
    DOI:  https://doi.org/10.1128/spectrum.04225-22
  4. Methods Mol Biol. 2023 ;2643 271-294
      The general interest in the study of the interplay between peroxisomes and viruses has increased in recent years, with different reports demonstrating that distinct viruses modulate peroxisome-related mechanisms to either counteract the cellular antiviral response or support viral propagation. Nevertheless, mechanistical details are still scarce, and information is often incomplete. In this chapter, we present an overview of the current knowledge concerning the interplay between peroxisomes and different viruses. We furthermore present, compare, and discuss the most relevant experimental approaches and tools used in the different studies. Finally, we stress the importance of further, more detailed, and spatial-temporal analyses that encompass all the different phases of the viruses' infection cycles. These studies may lead to the discovery of novel peroxisome-related cellular mechanisms that can further be explored as targets for the development of novel antiviral therapies.
    Keywords:  Antiviral response; Innate immunity; MAVS; Peroxisome biogenesis; Peroxisome metabolism; Peroxisomes; Viral infection; Virus
    DOI:  https://doi.org/10.1007/978-1-0716-3048-8_19
  5. J Virol. 2023 Mar 20. e0016023
      Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
    Keywords:  ARP101; SQSTM1/p62; antioxidant response element; human cytomegalovirus; noncanonical Keap1-Nrf2 pathway; p62-Keap1-Nrf2
    DOI:  https://doi.org/10.1128/jvi.00160-23
  6. Front Cell Infect Microbiol. 2023 ;13 1142173
       Background: Porcine epidemic diarrhea virus (PEDV), an intestinal pathogenic coronavirus, has caused significant economic losses to the swine industry worldwide. At present, there are several treatment methods, but there is still a lack of clinically effective targeted drugs, new antiviral mechanisms and drugs need to be explored.
    Methods: In this study, we established a model of erastin versus ferrostatin-1 treatment of Vero cells, and then detected virus proliferation and gene expression by RT-qPCR through PEDV infection experiments.
    Results: We demonstrated for the first time that erastin significantly inhibited the replication of PEDV upon entry into cells; Vero treated with erastin significantly regulated the expression of three genes, NRF2, ACSL4 and GPX4, notably erastin regulated the expression of these three genes negatively correlated with the expression induced by PEDV virus infection.
    Conclusions: Since NRF2, ACSL4 and GPX4 are classical Ferroptosis genes, this study speculates that erastin may inhibit the replication of PEDV in Vero cells in part through the regulation of ferroptosis pathway, and erastin may be a potential drug for the treatment of PEDV infection.
    Keywords:  Ferroptosis; Ferrostatin-1; Vero cells; erastin; porcine epidemic diarrhea virus
    DOI:  https://doi.org/10.3389/fcimb.2023.1142173