J Clin Med. 2025 Sep 07. pii: 6322. [Epub ahead of print]14(17):
Purpose: This review aims to synthesize current knowledge of anatomical variations of the popliteofibular ligament (PFL) and evaluate the clinical relevance of the classification system proposed by Olewnik et al. in the context of the diagnosis, surgical treatment, and rehabilitation of posterolateral corner (PLC) injuries. Methods: A comprehensive analysis of anatomical, surgical, and radiological studies concerning the PFL was conducted. The implications of PFL morphological variants were examined across clinical applications, with an emphasis on reconstructive strategies, imaging interpretation, and rehabilitation planning. Emerging research directions, including AI-supported imaging and personalized algorithms, were also explored. Results: Olewnik's classification identifies three distinct types of PFL, each with unique structural and biomechanical properties. Recognizing these variants enhances intraoperative orientation, facilitates tailored surgical techniques, and supports individualized rehabilitation protocols. Variant-specific biomechanics, identified via cadaveric studies and imaging, are essential for optimizing functional outcomes and minimizing postoperative instability. Furthermore, the classification offers a platform for developing future diagnostic and decision-support tools using artificial intelligence. Conclusions: The Olewnik et al. classification system should be adopted as a modern anatomical standard for the PFL. Its integration into clinical practice has the potential to improve surgical precision, reduce complication rates, and enhance patient-specific treatment planning. This framework also supports future advancements in orthopedic imaging, education, and AI-driven diagnostics. Beyond descriptive anatomy, we provide a pragmatic surgical algorithm for PLC repair/reconstruction that accounts for scar- and fibrosis-dominated fields and the limited bone stock of the fibular head.
Keywords: Olewnik; anatomical classification; knee instability; personalized orthopedics; popliteofibular ligament; posterolateral corner; reconstruction