bims-rimeca Biomed News
on RNA methylation in cancer
Issue of 2021‒08‒15
fourteen papers selected by
Sk Ramiz Islam
Saha Institute of Nuclear Physics


  1. J Healthc Eng. 2021 ;2021 2257066
      Background: N6-methyladenosine (m6A) is the most common internal modification present in mRNAs and long noncoding RNAs (lncRNAs), associated with tumorigenesis and cancer progression. However, little is known about the roles of m6A and its regulatory genes in nonsmall cell lung cancer (NSCLC). Here, we systematically explored the roles and prognostic significance of m6A-associated regulatory genes in NSCLC.Methods: The copy number variation (CNV), mutation, mRNA expression data, and corresponding clinical pathology information of 1057 NSCLC patients were downloaded from the cancer genome atlas (TCGA) database. The gain and loss levels of CNVs were determined by utilizing segmentation analysis and GISTIC algorithm. The GSEA was conducted to explore the functions related to different levels of m6A regulatory genes. Logrank test was utilized to assess the prognostic significance of m6A-related gene's CNV.
    Results: The genetic alterations of ten m6A-associated regulators were identified in 102 independent NSCLC samples and significantly related to advanced tumor stage. Deletions or shallow deletions corresponded to lower mRNA expression while copy number gains or amplifications were related to increased mRNA expression of m6A regulatory genes. Survival analysis showed the patients with copy number loss of FTO with worse disease-free survival (DFS) or overall survival (OS). Besides, copy number loss of YTHDC2 was also with poor OS for NSCLC patients. Moreover, high FTO expression was significantly associated with oxidative phosphorylation, translation, and metabolism of mRNA.
    Conclusion: Our findings provide novel insight for better understanding of the roles of m6A regulators and RNA epigenetic modification in the pathogenesis of NSCLC.
    DOI:  https://doi.org/10.1155/2021/2257066
  2. World J Surg Oncol. 2021 Aug 13. 19(1): 241
      BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, and due to its complex pathogenic factors, its prognosis is poor. N6-methyladenosine (m6A) RNA methylation plays an important role in the tumorigenesis, progression, and prognosis of many tumors. The m6A RNA methylation regulator small nuclear ribonucleoprotein polypeptide C (SNRPC), which encodes one of the specific protein components of the U1 small nuclear ribonucleoprotein (snRNP) particle, has been proven to be related to the prognosis of patients with HCC. However, the effect of SNRPC on the tumor microenvironment and immunotherapy in HCC remains unclear.CASE PRESENTATION: The HCC RNA-seq profiles in The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, including 421 LIHC and 440 LIRI-JP samples, respectively, were used in this study. Both the expression of SNRPC in HCC was upregulated in the TCGA and ICGC databases compared to normal tissues. Next, the expression of SNRPC was validated as a risk factor for prognosis by Kaplan-Meier analysis and employed to establish a nomogram with T pathologic stage. By gene set variation (GSVA) analysis and gene set enrichment (GSEA) analysis, we found that SNRPC was mainly related to protein metabolism and the immune process. Furthermore, the estimation of stromal and immune cells in malignant tumor tissues using expression (ESTIMATE), microenvironment cell population counter (MCP-counter), and single sample GSEA (ssGSEA) algorithms revealed that the high-SNRPC group had a lower stromal score, lower abundance of endothelial cells and fibroblasts, and lower immune infiltration. Ultimately, a tumor immune dysfunction and exclusion (TIDE) analysis revealed that patients in the low-SNRPC group may be more sensitive to immune checkpoint inhibitor therapy.
    CONCLUSION: SNRPC could serve as a promising prognostic and immunotherapeutic marker in HCC and might contribute to new directions and strategies for HCC treatment.
    Keywords:  Hepatocellular carcinoma; Immune checkpoint; Immunotherapy; Prognosis; SNRPC
    DOI:  https://doi.org/10.1186/s12957-021-02354-8
  3. Cancer Med. 2021 Aug 11.
      Arecoline, a major alkaloid within areca nut extract, is recognized as the primary active carcinogen promoting oral squamous cell carcinoma (OSCC) pathological development. Dysregulation of N6-methyladenosine (m6A) methyltransferase components (e.g., Fat mass and obesity-associated protein [FTO] and methyltransferase-like 3 [METTL3]) are closely associated with multiple cancer progression, including oral cancer. However, the biological function role of FTO in arecoline-induced oral cancer is largely unknown. We identified that FTO was significantly upregulated in OSCC tissues from patients with areca nut chewing habits and chronic arecoline-treated OSCC cell lines. Depletion of FTO attenuated the arecoline-promoted stemness, chemoresistance, and oncogenicity of OSCC cells. Finally, we revealed that FTO was negatively regulated by a transcription factor forkhead box protein A2 (FOXA2) in OSCC cells. This study, for the first time, demonstrated that FTO plays an oncogenic role in arecoline-induced OSCC progression. Thus, developing new therapeutic agents targeting FTO may serve as a promising method to treatment OSCC patients, especially those with areca nut chewing habits.
    Keywords:  FOXA2; FTO; arecoline; oral carcinoma; tumorigenesis
    DOI:  https://doi.org/10.1002/cam4.4188
  4. Biol Reprod. 2021 Aug 12. pii: ioab152. [Epub ahead of print]
      N6-methyladenosine (m6A), one of the most abundant RNA modifications, is involved in the progression of many diseases, but its role and related molecular mechanisms in endometriosis remain unknown. To address these issues, we detected m6A levels in normal, eutopic and ectopic endometrium and found the m6A levels decreased in eutopic and ectopic endometrium compared with normal endometrium. In addition, we proved that methyltransferase-like 3 (METTL3) downregulation accounted for m6A reduction in endometriosis. Furthermore, we observed that METTL3 knockdown facilitated the migration and invasion of human endometrial stromal cells (HESCs), while METTL3 overexpression exerted opposite effects, suggesting that METTL3 downregulation might contribute to endometriosis development by enhancing cellular migration and invasion. Mechanistically, METTL3-dependent m6A was involved in the DGCR8-mediated maturation of primary microRNA126 (miR126, pri-miR126). Moreover, miR126 inhibitor significantly enhanced the migration and invasion of METTL3-overexpressing HESCs, whereas miR126 mimics attenuated the migration and invasion of METTL3-silenced HESCs. Our study revealed the METTL3/m6A/miR126 pathway, whose inhibition might contribute to endometriosis development by enhancing cellular migration and invasion. It also showed that METTL3 might be a novel diagnostic biomarker and therapeutic target for endometriosis.
    Keywords:  Endometriosis; N6-methyladenosine (m6A); methyltransferase-like 3 (METTL3); microRNA126 (miR126); primary microRNA126 (pri-miR126)
    DOI:  https://doi.org/10.1093/biolre/ioab152
  5. Front Cell Dev Biol. 2021 ;9 702579
      In this study, we aimed to systematically profile global RNA N6-methyladenosine (m6A) modification patterns in a mouse model of diabetic cardiomyopathy (DCM). Patterns of m6A in DCM and normal hearts were analyzed via m6A-specific methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq) and RNA sequencing (RNA-seq). m6A-related mRNAs were validated by quantitative real-time PCR analysis of input and m6A immunoprecipitated RNA samples from DCM and normal hearts. A total of 973 new m6A peaks were detected in DCM samples and 984 differentially methylated sites were selected for further study, including 295 hypermethylated and 689 hypomethylated m6A sites (fold change (FC) > 1.5, P < 0.05). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analyses indicated that unique m6A-modified transcripts in DCM were closely linked to cardiac fibrosis, myocardial hypertrophy, and myocardial energy metabolism. Total m6A levels were higher in DCM, while levels of the fat mass and obesity-associated (FTO) protein were downregulated. Overexpression of FTO in DCM model mice improved cardiac function by reducing myocardial fibrosis and myocyte hypertrophy. Overall, m6A modification patterns were altered in DCM, and modification of epitranscriptomic processes, such as m6A, is a potentially interesting therapeutic approach.
    Keywords:  FTO; diabetic cardiomyopathy; m6A; myocardial fibrosis; myocyte hypertrophy
    DOI:  https://doi.org/10.3389/fcell.2021.702579
  6. J Biol Chem. 2021 Aug 07. pii: S0021-9258(21)00860-7. [Epub ahead of print] 101058
      Mitochondrial biogenesis and energy metabolism are essential for regulating the inflammatory state of monocytes. This state is partially controlled by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a coactivator that regulates mitochondrial biogenesis and energy metabolism. Disruption of these processes can also contribute to the initiation of chronic inflammatory diseases, such as pulmonary fibrosis, atherosclerosis and rheumatoid arthritis. Methyltransferase-like 3 (METTL3)-dependent N6-methyladenosine (m6A) methylation has recently been shown to regulate a variety of inflammatory processes. However, the role of m6A mRNA methylation in affecting mitochondrial metabolism in monocytes under inflammation is unclear, nor is there an established relationship between m6A methylation and PGC-1α. In this study, we identified a novel mechanism by which METTL3 acts during oxidized low-density lipoprotein (oxLDL)-induced monocyte inflammation, where METTL3 and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) cooperatively modify PGC-1α mRNA, mediating its degradation, decreasing PGC-1α protein levels, and thereby enhancing the inflammatory response. METTL3 coordinated with YTHDF2 to suppress the expression of PGC-1α, as well as that of cytochrome c (CYCS) and NADH:ubiquinone oxidoreductase subunit C2 (NDUFC2), and reduced ATP production and oxygen consumption rate (OCR). This subsequently increased the accumulation of cellular and mitochondrial reactive oxygen species (ROS) and the levels of proinflammatory cytokines in inflammatory monocytes. These data may provide new insights into the role of METTL3-dependent m6A modification of PGC-1α mRNA in the monocyte inflammation response. These data also contribute to a more comprehensive understanding of the pathogenesis of monocyte-macrophage inflammation-associated diseases, such as pulmonary fibrosis, atherosclerosis and rheumatoid arthritis.
    Keywords:  METTL3; PGC-1α; RNA methylation; inflammation; m(6)A modification; mitochondria; monocytes; post-transcriptional regulation
    DOI:  https://doi.org/10.1016/j.jbc.2021.101058
  7. Front Cell Dev Biol. 2021 ;9 709299
      As the most abundant internal modification in eukaryotic cells, N6-methyladenosine (m6A) in mRNA has shown widespread regulatory roles in a variety of physiological processes and disease progressions. Circular RNAs (circRNAs) are a class of covalently closed circular RNA molecules and play an essential role in the pathogenesis of various diseases. Recently, accumulating evidence has shown that m6A modification is widely existed in circRNAs and found its key biological functions in regulating circRNA metabolism, including biogenesis, translation, degradation and cellular localization. Through regulating circRNAs, studies have shown the important roles of m6A modification in circRNAs during immunity and multiple diseases, which represents a new layer of control in physiological processes and disease progressions. In this review, we focused on the roles played by m6A in circRNA metabolism, summarized the regulatory mechanisms of m6A-modified circRNAs in immunity and diseases, and discussed the current challenges to study m6A modification in circRNAs and the possible future directions, providing a comprehensive insight into understanding m6A modification of circRNAs in RNA epigenetics.
    Keywords:  N6-methyladenosine; circular RNAs; diseases; immunity; metabolism
    DOI:  https://doi.org/10.3389/fcell.2021.709299
  8. Cancer Cell Int. 2021 Aug 10. 21(1): 421
      In recent years, with the development of RNA sequencing technology and bioinformatics methods, the epigenetic modification of RNA based on N6-methyladenosine (m6A) has gradually become a research hotspot in the field of bioscience. m6A is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs). m6A methylation modification can dynamically and reversibly regulate RNA transport, localization, translation and degradation through the interaction of methyltransferase, demethylase and reading protein. m6A methylation can regulate the expression of proto-oncogenes and tumor suppressor genes at the epigenetic modification level to affect tumor occurrence and metastasis. The morbidity and mortality of esophageal cancer (EC) are still high worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common tissue subtype of EC. This article reviews the related concepts, biological functions and recent advances of m6A methylation in ESCC, and looks forward to the prospect of m6A methylation as a new diagnostic biomarker and potential therapeutic target for ESCC.
    Keywords:  Esophageal squamous cell carcinoma; Methylation; N6-methyladenosine
    DOI:  https://doi.org/10.1186/s12935-021-02132-2
  9. Environ Pollut. 2021 Sep 15. pii: S0269-7491(21)01091-5. [Epub ahead of print]285 117509
      Humans benefit from nuclear technologies but consequently experience nuclear disasters or side effects of iatrogenic radiation. Hematopoietic system injury first arises upon radiation exposure. As an intricate new layer of genetic control, the posttranscriptional m6A modification of RNA has recently come under investigation and has been demonstrated to play pivotal roles in multiple physiological and pathological processes. However, how the m6A methylome functions in the hematopoietic system after irradiation remains ambiguous. Here, we uncovered the time-varying epitranscriptome-wide m6A methylome and transcriptome alterations in γ-ray-exposed mouse bone marrow. 4 Gy γ-irradiation rapidly (5 min and 2 h) and severely impaired the mouse hematopoietic system, including spleen and thymus weight, blood components, tissue inflammation and malondialdehyde (MDA) levels. The m6A content and expression of m6A related enzymes were altered. Gamma-irradiation triggered dynamic and reversible m6A modification profiles and altered mRNA expression, where both m6A fold-enrichment and mRNA expression most followed the (5 min_up/2 h_down) pattern. The CDS enrichment region preferentially upregulated m6A peaks at 5 min. Moreover, the main GO and KEGG pathways were closely related to metabolism and the classical radiation response. Finally, m6A modifications correlated with transcriptional regulation of genes in multiple aspects. Blocking the expression of m6A demethylases FTO and ALKBH5 mitigated radiation hematopoietic toxicity. Together, our findings present the comprehensive landscape of mRNA m6A methylation in the mouse hematopoietic system in response to γ-irradiation, shedding light on the significance of m6A modifications in mammalian radiobiology. Regulation of the epitranscriptome may be exploited as a strategy against radiation damage.
    Keywords:  Epitranscriptome; Hematopoietic injury; MeRIP; Mouse bone marrow; Radiation; m(6)A
    DOI:  https://doi.org/10.1016/j.envpol.2021.117509
  10. Front Oncol. 2021 ;11 679367
      Modification of m6A, as the most abundant mRNA modification, plays diverse roles in various biological processes in eukaryotes. Emerging evidence has revealed that m6A modification is closely associated with the activation and inhibition of tumor pathways, and it is significantly linked to the prognosis of cancer patients. Aberrant reduction or elevated expression of m6A regulators and of m6A itself have been identified in numerous tumors. In this review, we give a description of the dynamic properties of m6A modification regulators, such as methyltransferases, demethylases, and m6A binding proteins, and indicate the value of the balance between these proteins in regulating the expression of diverse genes and the underlying effects on cancer development. Furthermore, we summarize the "dual-edged weapon" role of RNA methylation in tumor progression and discuss that RNA methylation can not only result in tumorigenesis but also lead to suppression of tumor formation. In addition, we summarize the latest research progress on small-molecule targeting of m6A regulators to inhibit or activate m6A. These studies indicate that restoring the balance of m6A modification via targeting specific imbalanced regulators may be a novel anti-cancer strategy.
    Keywords:  epigenetics; genetics; m6A modification; therapeutic targets; tumor
    DOI:  https://doi.org/10.3389/fonc.2021.679367
  11. Front Cell Dev Biol. 2021 ;9 694673
      Colorectal cancer and gastric cancer are the most prevalent gastrointestinal malignancies worldwide, and early detection of these cancers is crucial to reduce their incidence and mortality. RNA methylation plays an important regulatory role in a variety of physiological activities, and it has drawn great attention in recent years. Methylated adenosine (A) modifications such as N 6-methyladenosine (m6A), N 1-methyladenosine (m1A), 2'-O-methyladenosine (Am), N 6,2'-O-dimethyladenosine (m6Am), and N 6,N 6-dimethyladenosine (m6 2A) are typical epigenetic markers of RNA, and they are closely correlated to various diseases including cancer. Serum is a valuable source of biofluid for biomarker discovery, and determination of these adenosine modifications in human serum is desirable since they are emerging biomarkers for detection of diseases. In this work, a targeted quantitative analysis method using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) was developed and utilized to analyze these methylated adenosine modifications in serum samples. The concentration differences between the healthy volunteers and cancer patients were evaluated by Mann-Whitney test, and receiver operator characteristic (ROC) curve analysis was performed to access the potential of these nucleosides as biomarkers. We demonstrated the presence of the m6Am in human serum for the first time, and we successfully quantified the concentrations of A, m6A, m1A, and m6Am in serum samples from 99 healthy controls, 51 colorectal cancer patients, and 27 gastric cancer patients. We found that the levels of m6A and m6Am in serum were both increased in colorectal cancer or gastric cancer patients, compared to that in healthy controls. These results indicate that m6A and m6Am in serum may act as potential biomarkers for early detection and prognosis of colorectal cancer and gastric cancer. In addition, the present work will stimulate investigations on the effects of adenosine methylation on the initiation and progression of colorectal cancer and gastric cancer.
    Keywords:  RNA methylation; biomarker; colorectal cancer; gastric cancer; hydrophilic interaction liquid chromatography-tandem mass spectrometry; methylated adenosine
    DOI:  https://doi.org/10.3389/fcell.2021.694673
  12. Mol Ther. 2021 Aug 06. pii: S1525-0016(21)00399-3. [Epub ahead of print]
      Mis-regulated epigenetic modifications in RNAs are associated with human cancers. The transfer RNAs (tRNAs) are the most heavily modified RNA species in cells, however, little is known about the functions of tRNA modifications in cancers. In this study, we uncovered that the expression levels of tRNA N7-methylguanosine (m7G) methyltransferase complex components METTL1 and WDR4 are significantly elevated in human lung cancer samples and negatively associated with patient prognosis. Impaired m7G tRNA modification upon METTL1/WDR4 depletion resulted in decreased cell proliferation, colony formation, cell invasion and impaired tumorigenic capacities of lung cancer cells in vitro and in vivo. Moreover, gain-of-function and mutagenesis experiments revealed that METTL1 promoted lung cancer growth and invasion through regulation of m7G tRNA modifications. Profiling of tRNA methylation and mRNA translation revealed that highly translated mRNAs have higher frequencies of m7G tRNA decoded codons and knockdown of METTL1 resulted in decreased translation of mRNAs with higher frequencies of m7G tRNA codons, suggesting that tRNA modifications and codon usage play essential function in mRNA translation regulation. Our data uncovered novel insights on mRNA translation regulation through tRNA modifications and the corresponding mRNA codon compositions in lung cancer, providing new molecular basis underlying lung cancer progression.
    Keywords:  METTL1; N(7)-methylguanosine (m(7)G) tRNA modification; WDR4; lung cancer; translation
    DOI:  https://doi.org/10.1016/j.ymthe.2021.08.005
  13. Int J Oral Sci. 2021 Aug 11. 13(1): 26
      Methyltransferase like 13 (METTL13), a kind of methyltransferase, is implicated in protein binding and synthesis. The upregulation of METTL13 has been reported in a variety of tumors. However, little was known about its potential function in head and neck squamous cell carcinoma (HNSCC) so far. In this study, we found that METTL13 was significantly upregulated in HNSCC at both mRNA and protein level. Increased METTL13 was negatively associated with clinical prognosis. And METTL13 markedly affected HNSCC cellular phenotypes in vivo and vitro. Further mechanism study revealed that METTL13 could regulate EMT signaling pathway by mediating enhancing translation efficiency of Snail, the key transcription factor in EMT, hence regulating the progression of EMT. Furthermore, Snail was verified to mediate METTL13-induced HNSCC cell malignant phenotypes. Altogether, our study had revealed the oncogenic role of METTL13 in HNSCC, and provided a potential therapeutic strategy.
    DOI:  https://doi.org/10.1038/s41368-021-00130-8
  14. Med Sci Monit. 2021 Aug 10. 27 e932370
      BACKGROUND Colorectal cancer (CRC) is the second most deadly cancer in the world according to GLOBOCAN 2020 data. Accumulating evidence suggests that RNA methylation modification is also misregulated in human cancers and may be a potential ideal target for cancer treatment. MATERIAL AND METHODS m6A-related differentially expressed genes (DEGs) were identified from colon adenocarcinoma and rectum adenocarcinoma esophageal carcinoma patients with different pathological stages. The protein-protein interaction (PPI) network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were conducted. Cox regression analysis was applied to the screening of m6A-related DEGs significantly associated with the overall survival (OS), and those selected genes were used for LASSO regression analysis to construct prognostic signature and calculate patients' risk scores. RESULTS We identified 673 m6A-related DEGs from CRC patients in different pathologic stages, and 146 of them were associated with OS. CTNNB1, TRIM37, RAB7A, CASC5/KNL1, CENPE, CCNB1, UBE2H, HSPA8, KIF1A, and FBXW4 were hub genes of the PPI network. Nine m6A-related genes were screened out to build the prognostic risk model. TNM stage, vascular invasion, and the risk score were independently related to the OS of CRC patients. CONCLUSIONS Nine candidate m6A-related mRNA biomarkers (LRRC17, NFKB1, NOS2, PCDHB2, RAB7A, RPS6KA1, RRNAD1, TLE6, and UBE2H) were found to be closely related to the clinicopathology and prognosis of colorectal cancer, indicating that they could be potential prognostic biomarkers for patients with colorectal cancer.
    DOI:  https://doi.org/10.12659/MSM.932370