bims-rimeca Biomed News
on RNA methylation in cancer
Issue of 2023‒09‒17
twenty papers selected by
Sk Ramiz Islam, Saha Institute of Nuclear Physics



  1. Biol Chem. 2023 Sep 12.
      N6-methyladenosine (m6A) and N7-methylguanosine (m7G) modification of RNA represent two major intracellular post-transcriptional regulation modes of gene expression. However, the crosstalk of these two epigenetic modifications in tumorigenesis remain poorly understood. Here, we show that m6A methyltransferase METTL3-mediated METTL1 promotes cell proliferation of head and neck squamous cell carcinoma (HNSC) through m7G modification of the cell-cycle regulator CDK4. By mining the database GEPIA, METTL1 was shown to be up-regulated in a broad spectrum of human cancers and correlated with patient clinical outcomes, particularly in HNSC. Mechanistically, METTL3 methylates METTL1 mRNA and mediates its elevation in HNSC via m6A. Functionally, over-expression of METTL1 enhances HNSC cell growth and facilitates cell-cycle progress, while METTL1 knockdown represses these biological behaviors. Moreover, METTL1 physically binds to CDK4 transcript and regulates its m7G modification level to stabilize CDK4. Importantly, the inhibitory effects of METTL1 knockdown on the proliferation of HNSC, esophageal cancer (ESCA), stomach adenocarcinoma (STAD), and colon adenocarcinoma (COAD) were significantly mitigated by over-expression of CDK4. Taken together, this study expands the understanding of epigenetic mechanisms involved in tumorigenesis and identifies the METTL1/CDK4 axis as a potential therapeutic target for digestive system tumors.
    Keywords:  METTL1; METTL3; N6-methyladenosine; N7-methylguanosine; cancer proliferation
    DOI:  https://doi.org/10.1515/hsz-2023-0260
  2. Transl Cancer Res. 2023 Aug 31. 12(8): 2033-2047
      Background: N6-methyladenosine (m6A) has a critical role in the development and progression of cancer. However, the genetic and epigenetic patterns, as well as tumor microenvironment (TME) infiltration characteristics of m6A regulators in colorectal cancer (CRC) remain largely unknown.Methods: Molecular patterns of m6A modifications of 24 m6A regulators in CRC samples were evaluated using data from The Cancer Genome Atlas (TCGA). Mutations, copy number variations (CNVs), DNA methylation, and chromatin accessibility were examined to investigate the underlying mechanisms of the aberrant expression of m6A regulators. Correlations between m6A-related genes and TME cell-infiltrating characteristics were evaluated using Tumor Immune Estimation Resource (TIMER).
    Results: The m6A regulators were frequently dysregulated in CRC, with two downregulated and 16 upregulated. All the m6A regulators had mutations (frequency ranging from 0.9% to 7%), with active mutations tending to occur in RBM15 and inactive mutations in ZC3H13. Only five m6A regulators had CNV frequency greater than 1%: YTHDC2 (2.4%), YTHDF1 (7.0%), YTHDF3 (1.9%), VIRMA (1.7%), and ZC3H13 (3.0%). The copy numbers of these five genes were positively correlated with their expression levels. The m6A regulators frequently showed imbalanced methylation in CRC, with hypomethylation of YTHDF2, IGF2BP3, FTO, and hypermethylation of HNRNPC, METTL3, and WTAP. Most m6A regulators had high chromatin accessibility, which was positively correlated with their gene expression. IGF2BP1 was identified as an independent prognostic factor for overall survival. Moreover, the expression of most m6A regulators was positively correlated with the infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells.
    Conclusions: Aberrant expression of m6A regulators is associated with mutation, CNV, and chromatin accessibility, owing to both genetic and epigenetic modifications. The TME infiltration characterization of m6A regulators could guide the development of more effective immunotherapy strategies in CRC.
    Keywords:  N6-methyladenosine (m6A); colorectal cancer (CRC); tumor microenvironment (TME)
    DOI:  https://doi.org/10.21037/tcr-23-186
  3. Cancer Sci. 2023 Sep 12.
      N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic RNA and involved in the carcinogenesis of various malignancies. However, the functions and mechanisms of m6A in gallbladder cancer (GBC) remain unclear. In this study, we investigated the role and underlying mechanism of the RNA-binding protein YT521-B homology domain-containing family protein 2 (YTHDF2), an m6A reader, in GBC. Herein, we detected that YTHDF2 was remarkably upregulated in GBC tissues compared to normal gallbladder tissues. Functionally, YTHDF2 overexpression promoted the proliferation, tumor growth, migration, and invasion of GBC cells while inhibiting the apoptosis in vitro and in vivo. Conversely, YTHDF2 knockdown induced opposite results. Mechanistically, we further investigated the underlying mechanism by integrating RNA immunoprecipitation sequencing (RIP-seq), m6A-modified RIP-seq, and RNA sequencing, which revealed that death-associated protein kinase 3 (DAPK3) is a direct target of YTHDF2. YTHDF2 binds to the 3'-UTR of DAPK3 mRNA and facilitates its degradation in an m6A-dependent manner. DAPK3 inhibition restores the tumor-suppressive phenotype induced by YTHDF2 deficiency. Moreover, the YTHDF2/DAPK3 axis induces the resistance of GBC cells to gemcitabine. In conclusion, we reveal the oncogenic role of YTHDF2 in GBC, demonstrating that YTHDF2 increases the mRNA degradation of the tumor suppressor DAPK3 in an m6A-dependent way, which promotes GBC progression and desensitizes GBC cells to gemcitabine. Our findings provide novel insights into potential therapeutic strategies for GBC.
    Keywords:  DAPK3; YTHDF2; cancer progression; gallbladder cancer; m6A modification
    DOI:  https://doi.org/10.1111/cas.15953
  4. J Hepatocell Carcinoma. 2023 ;10 1479-1495
      Purpose: N6-methyladenosine (m6A) modification has shown critical roles in regulating mRNA fate. Non-coding RNAs also have important roles in various diseases, including hepatocellular carcinoma (HCC). However, the potential influences of m6A modification on non-coding RNAs are still unclear. In this study, we identified a novel m6A-modified ATP8B1-AS1 and aimed to investigate the effects of m6A on the expression and role of ATP8B1-AS1 in HCC.Methods: qPCR was performed to measure the expression of related genes. The correlation between gene expression and prognosis was analyzed using public database. m6A modification level was measured using MeRIP and single-base elongation- and ligation-based qPCR amplification method. The roles of ATP8B1-AS1 in HCC were investigated using in vitro and in vivo functional assays. The mechanisms underlying the roles of ATP8B1-AS1 were investigated by ChIRP and ChIP assays.
    Results: ATP8B1-AS1 is highly expressed in HCC tissues and cell lines. High expression of ATP8B1-AS1 is correlated with poor overall survival of HCC patients. ATP8B1-AS1 is m6A modified and the 792 site of ATP8B1-AS1 is identified as an m6A modification site. m6A modification increases the stability of ATP8B1-AS1 transcript. m6A modification level of ATP8B1-AS1 is increased in HCC tissues and cell lines, and correlated with poor overall survival of HCC patients. ATP8B1-AS1 promotes HCC cell proliferation, migration, and invasion, which were abolished by the mutation of m6A-modified 792 site. Mechanistic investigation revealed that m6A-modified ATP8B1-AS1 interacts with and recruits m6A reader YTHDC1 and histone demethylase KDM3B to MYC promoter region, leading to the reduction of H3K9me2 level at MYC promoter region and activation of MYC transcription. Functional rescue assays showed that depletion of MYC largely abolished the oncogenic roles of ATP8B1-AS1.
    Conclusion: m6A modification level of ATP8B1-AS1 is increased and correlated with poor prognosis in HCC. m6A-modified ATP8B1-AS1 exerts oncogenic roles in HCC via epigenetically activating MYC expression.
    Keywords:  MYC signaling; N6-methyladenosine; hepatocellular carcinoma; histone methylation; noncoding RNA
    DOI:  https://doi.org/10.2147/JHC.S415318
  5. Nat Cell Biol. 2023 Sep;25(9): 1279-1289
      Embryos across metazoan lineages can enter reversible states of developmental pausing, or diapause, in response to adverse environmental conditions. The molecular mechanisms that underlie this remarkable dormant state remain largely unknown. Here we show that N6-methyladenosine (m6A) RNA methylation by Mettl3 is required for developmental pausing in mouse blastocysts and embryonic stem (ES) cells. Mettl3 enforces transcriptional dormancy through two interconnected mechanisms: (1) it promotes global mRNA destabilization and (2) it suppresses global nascent transcription by destabilizing the mRNA of the transcriptional amplifier and oncogene N-Myc, which we identify as a crucial anti-pausing factor. Knockdown of N-Myc rescues pausing in Mettl3-/- ES cells, and forced demethylation and stabilization of Mycn mRNA in paused wild-type ES cells largely recapitulates the transcriptional defects of Mettl3-/- ES cells. These findings uncover Mettl3 as a key orchestrator of the crosstalk between transcriptomic and epitranscriptomic regulation during developmental pausing, with implications for dormancy in adult stem cells and cancer.
    DOI:  https://doi.org/10.1038/s41556-023-01212-x
  6. Cancer Biol Ther. 2023 Dec 31. 24(1): 2249173
      Aberrant expression of adipogenic regulatory factors (ADIRF) in tumor cells is critical for tumor growth and metastasis. N6-methyladenosine (m6A) modifications have an important role in a variety of biological activities. Our study aimed to investigate the role of ADIRF in adenocarcinoma and to elucidate the regulatory role of m6A signaling on ADIRF. Differential expression of genes in tumor and normal tissues was analyzed using the LUAD dataset (GSE1987). The Kaplan-Meier method and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prognostic and diagnostic value of ADIRF in LUAD. Loss-of-function or gain-of-function experiments were performed to study the effect of ADIRF on LUAD growth in vitro. The molecular mechanism of action of ADIRF in LUAD was confirmed using a dual-luciferase reporter system and MeRIP-qPCR. We identified a loss of ADIRF expression in LUAD tissues and cells. Furthermore, the restoration of ADIRF levels attenuated LUAD cell growth and metastasis in vitro. Mechanistically, an m6A "eraser," α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), eliminated the ADIRF m6A modification motif and further blocked the binding of the YTH domain-containing 2 (YTHDC2)-binding protein to ADIRF. At the molecular level, ALKBH5 enrichment increased ADIRF mRNA levels and prevented the attenuation of ADIRF mRNA by YTHDC2. The effects of ALKBH5 overexpression could also extend to the inhibition of LUAD cell proliferation and metastasis. This study linked ADIRF with the m6A modifying regulators ALKBH5 and YTHDC2, providing a promising molecular intervention for LUAD and deepening the understanding of LUAD mechanisms.
    Keywords:  ADIRF; ALKBH5; N6-methyladenosine; YTHDC2; lung adenocarcinoma; metastasis
    DOI:  https://doi.org/10.1080/15384047.2023.2249173
  7. Genes Genomics. 2023 Sep 09.
      BACKGROUND: Lung cancer is the most common primary malignant tumor of the lung, and 85% of lung cancer is non-small cell lung cancer (NSCLC). The N6-methyladenosine (m6A) and long noncoding RNAs (lncRNAs) have been widely reported to participate in the development of non-small cell lung cancer.OBJECTIVE: However, the potential molecular mechanisms of m6A-regulated lncRNAs in NSCLC still need further investigation.
    METHODS: The expression levels and the role of lncRNA NEAT1 in NSCLC tissues or cells were measured by RT-qPCR, Western blot, cell counting kit 8 (CCK-8), flow cytometry assay. RNA immunoprecipitation (RIP) was used to measure the levels of m6A modification of NEAT1. Bioinformatics analysis and dual-luciferase reporter gene assay were detected the relationship between miR-361-3p and NEAT1/HMGA1. Mouse xenograft tumor models were established to confirm the effects of lncRNA NEAT1 in vivo.
    RESULTS: In this study, we verified whether m6A-modified lncRNA nuclear enriched abundant transcript 1 (NEAT1) is involved in NSCLC progression via miR-361-3p/HMGA1 axis. Firstly, we found that lncRNA NEAT1 was upregulated in NSCLC, and was associated with a poor survival in NSCLC patients. Methyltransferase like 3 (METTL3)-mediated m6A modification stabilized and upregulated NEAT1 expression. Next, function experiment indicated that depletion of METTL3 and NEAT1 induced cell apoptosis and inhibited cell proliferation, epithelial-mesenchymal transition (EMT). Likewise, in vivo experiments further supported the oncogenic role of NEAT1 in NSCLC. In addition, the molecular mechanism was uncovered in our study, and we found that lncRNA NEAT1 promoted the expression of high-mobility group AT-hook 1 (HMGA1) by sponging miR-361-3p and then promoted tumorigenesis of NSCLC.
    CONCLUSION: In conclusion, our findings demonstrated that METTL3-mediated m6A modification accelerated NSCLC progression by regulating the NEAT1/miR-361-3p/HMGA1 axis, which provides important targets for the treatment of NSCLC.
    Keywords:  Methyltransferase like 3; N6-methyladenosine; Non-small cell lung cancer; Nuclear enriched abundant transcript 1
    DOI:  https://doi.org/10.1007/s13258-023-01442-1
  8. EMBO Rep. 2023 Sep 14. e55506
      N6 -methyladenosine (m6 A), the most abundant internal modification in eukaryotic mRNA, plays important roles in many physiological and pathological processes, including the development and progression of cancer. RNA modification by m6 A is regulated by methyltransferases, demethylases, and m6 A-binding proteins that function in large part by regulating mRNA expression and function. Here, we investigate the expression of m6 A regulatory proteins in breast cancer. We find that expression of KIAA1429/VIRMA, a component of the m6 A methyltransferase complex, is upregulated in breast cancer tissue and correlates positively with poor survival. KIAA1429/VIRMA is mislocalized to the cytosol of breast cancer tissues and cell lines, and shRNA-mediated knockdown inhibits breast cancer cell proliferation, migration, and invasion. Mechanistically, KIAA1429/VIRMA is shown to bind to the m6 A-dependent RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), leading to recruitment and stabilization of m6 A-modified hyaluronan synthase 2 (HAS2) mRNA. HAS2 mRNA and KIAA1429/VIRMA mRNA levels correlate positively in breast cancer tissues, suggesting that the KIAA1429/VIRMA-IGF2BP3-HAS2 axis promotes breast cancer growth and contributes to poor prognosis.
    Keywords:  HAS2; IGF2BP3; KIAA1429/VIRMA; breast cancer; m6A RNA modification
    DOI:  https://doi.org/10.15252/embr.202255506
  9. Int Endod J. 2023 Sep 12.
      AIM: Fat mass and obesity-associated (FTO) protein, the first discovered N6-methyladenine (m6A) demethylase, played positive roles in bone formation. In this study, the aim was to investigate the function and potential mechanism of Fto in dentine formation.METHODOLOGY: In vivo model, postnatal 12-day (PN12), 4-week-old (4 wk), 6-week-old (6 wk) healthy male C57BL/6J were randomly divided into Fto knockout (Fto-/- ) mice and wild-type (WT) littermates according to their genotypes, with 3-5 mice in each group. The mandibles of Fto-/- mice and WT control littermates were isolated for analysis by micro-computed tomography (micro-CT), 3-dimensional reconstruction and Haematoxylin-eosin (HE) staining. In vitro, mouse dental papilla cells (mDPCs) and human dental stem pulp cells (hDPSCs) were cultured with odontogenetic medium to evaluate differentiation capacity; expression levels of odontoblastic related genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). The inclusion levels of Runt-related transcription factor 2 (RUNX2) exon 5 in mDPCs and hDPSCs were detected by semiquantitative real-time polymerase chain reaction (RT-PCR). The RNA binding motif protein 4 (RBM4) m6A site was verified through m6A methylated RNA immunoprecipitation (MeRIP) and the stability of RBM4 mRNA influenced by FTO knockdown was measured by mRNA stability assay. Differences with p values < .05 were regarded as statistically significant.
    RESULTS: We discovered that Fto-/- mice showed significant dentine formation defects characterized by widened pulp cavity, enlarged pulp-tooth volume ratio, thinned dentine and pre-dentine layer of root (p < .05). Fto-/- mDPCs and FTO-silencing hDPSCs not only exhibited insufficient mineralization ability and decreased expression levels of odontoblastic mineralization related genes (p < .05), but showed significantly reduced Runx2 exon 5 inclusion level (p < .05). FTO knockdown increased the m6A level of RBM4 and destabilized the mRNA of RBM4, thus contributing to the reduced RBM4 expression level. Moreover, Rbm4 overexpression in Fto-/- mDPCs can partly restore Runx2 exon 5 inclusion level and the differentiation ability disrupted by Fto knockout.
    CONCLUSION: Thus, within the limitations of this study, the data suggest that FTO promotes odontoblastic differentiation during dentine formation by stabilizing RBM4 mRNA to promote RUNX2 exon 5 inclusion.
    Keywords:  animal model; cell differentiation; dental pulp stem cell(s); dentine; mRNA decay; odontoblast(s)
    DOI:  https://doi.org/10.1111/iej.13975
  10. Biomed Pharmacother. 2023 Sep 09. pii: S0753-3322(23)01275-1. [Epub ahead of print]167 115477
      Cancer therapy resistance (CTR) is the development of cancer resistance to multiple therapeutic strategies, which severely affects clinical response and leads to cancer progression, recurrence, and metastasis. N6-methyladenosine (m6A) has been identified as the most common, abundant, and conserved internal transcriptional alterations of RNA modifications, regulating RNA splicing, translation, stabilization, degradation, and gene expression, and is involved in the development and progression of a variety of diseases, including cancer. Recent studies have shown that m6A modifications play a critical role in both cancer development and progression, especially in reversing CTR. Although m6A modifications have great potential in CTR, the specific molecular mechanisms are not fully elucidated. In this review, we summarize the potential molecular mechanisms of m6A modification in CTR. In addition, we update recent advances in natural products from Traditional Chinese Medicines (TCM) and small-molecule lead compounds targeting m6A modifications, and discuss the great potential and clinical implications of these inhibitors targeting m6A regulators and combinations with other therapies to improve clinical efficacy and overcome CTR.
    Keywords:  Cancer; Epigenetics; N6-methyladenosine; RNA metabolism; Therapeutic resistance
    DOI:  https://doi.org/10.1016/j.biopha.2023.115477
  11. Apoptosis. 2023 Sep 12.
      Increasing data and literature have illustrated that tumor immune escape represents a major source of tumor formation and recrudesce. Besides, novel findings also indicate that RNA N6-methyladenosine (m6A) participates in the human cancer immune escape. Here, our study investigated the functions of m6A reader YTHDF1 in prostate cancer (PCa) immune response and explored the functional mechanism. Results reported that YTHDF1 up-regulated in PCa samples and was closely correlated to poor clinical prognosis. Functionally, YTHDF1 inhibited the killing activity of CD8 + T cells to PCa cells, and moreover mitigated the ferroptosis. Mechanistically, PD-L1 acted as the target of YTHDF1, and YTHDF1 upregulated the transcriptional activity of PD-L1 mRNA. Collectively, YTHDF1 promoted functional PD-L1 partially through enhancing its transcriptional stability, which was necessary for PCa cells to evade effector T cell cytotoxicity and CD8 + T cells mediated ferroptosis. In conclusion, these findings indicate that YTHDF1 represses the CD8 + T cell-mediated antitumor immunity and ferroptosis in PCa via m6A-PD-L1 manner, which may provide novel insight for PCa immunotherapy.
    Keywords:  Immune escape; N6-methyladenosine; PD-L1; Prostate cancer; YTHDF1
    DOI:  https://doi.org/10.1007/s10495-023-01885-7
  12. Nutr Metab (Lond). 2023 Sep 15. 20(1): 40
      BACKGROUND: Insulin resistance (IR) in hepatocytes endangers human health, and frequently results in the development of non-alcoholic fatty liver disease (NAFLD). Research on m6A methylation of RNA molecules has gained popularity in recent years; however, the molecular mechanisms regulating the processes of m6A modification and IR are not known. The cytochrome P450 (CYP450) enzyme system, which is mainly found in the liver, is associated with the pathogenesis of NAFLD. However, few studies have been conducted on CYP450 related m6A methylation. Here, we investigated the role of the methyltransferase METTL3 in exacerbating IR in hepatocytes, mainly focusing on the regulation of m6A modifications in CYP2B6.METHODS AND RESULTS: Analysis using dot blot and epitranscriptomic chips revealed that the m6A modification pattern of the transcriptome in high-fat diet (HFD)-induced fatty liver and free fatty acid (FFA)-induced fatty hepatocytes showed significant changes. CYP450 family members, especially Cyp2b10, whose homolog in humans is CYP2B6, led to a noticeable increase in m6A levels in HFD-induced mice livers. Application of the METTL3 methyltransferase inhibitor, STM2457, increased the level of insulin sensitivity in hepatocytes. We then analyzed the role of METTL3 in regulating m6A modification of CYP2B6 in hepatocytes. METTL3 regulated the m6A modification of CYP2B6, and a positive correlation was found between the levels of CYP2B6 translation and m6A modifications. Furthermore, interference with METTL3 expression and exposure to STM2457 inhibited METTL3 activity, which in turn interfered with the phosphorylated insulin receptor substrate (pIRS)-glucose transporter 2 (GLUT2) insulin signaling pathway; overexpression of CYP2B6 hindered IRS phosphorylation and translocation of GLUT2 to membranes, which ultimately exacerbated IR.
    CONCLUSION: These findings offer unique insights into the role that METTL3-mediated m6A modifications of CYP2B6 play in regulating insulin sensitivity in hepatocytes and provide key information for the development of strategies to induce m6A modifications for the clinical treatment of NAFLD.
    Keywords:  CYP2B6/Cyp2b10; Insulin resistance; METTL3; Non-alcoholic fatty liver disease (NAFLD); m6A methylation modification
    DOI:  https://doi.org/10.1186/s12986-023-00762-z
  13. Front Immunol. 2023 ;14 1227593
      Background: N6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of RNA, which can affect RNA metabolism and protein translation. The m6A modification plays a critical role in cancer development, including hepatocellular carcinoma (HCC). Despite several m6A-related signatures in HCC, most of them lack the necessary validation and the reliability is still elusive.Methods: Differentially expressed genes (DEGs) in the Cancer Genome Atlas were comprehensively analyzed to identify m6A signature associated with HCC prognosis. Gene set enrichment analysis, tumor mutation burden (TMB), immune infiltration, and therapeutic response were evaluated. Importantly, mass spectrometry proteomics and multiplex immunofluorescence assays were performed for validation.
    Results: The m6A-related protein-coding gene signature was established, which can divide HCC into high-/low-risk subgroups with markedly different overall survival (OS) and clinical stages. Furthermore, we validated its reliability and robustness in our 101 independent HCC specimens using proteomic detection and confirmed that our signature readily identified high-risk HCC patients with 3-year survival rates of 44.1% vs. 71.8% in the low-risk group. Functional analysis indicated that the high-risk group might stimulate the cell cycle and activate oncogenic pathways such as MAPK, mTOR, and VEGF, whereas the low-risk group mainly regulated amino acid, fatty acid, and drug metabolism. Additionally, the high-risk group had more TMB, upregulated immune checkpoint molecule expression, including PD-1, CTLA4, TIM3, and LAG3, and preferentially formed an immunosuppressive microenvironment. Accordingly, potential therapeutic responses showed that high-risk patients were potentially sensitive to inhibitors targeting the cell cycle and MAPK signaling, with patients possibly benefiting from immunotherapy. Moreover, multiplex immunofluorescence assays indicated that high-risk HCC samples displayed distinct immunosuppressive features, with abundant M2-polarized macrophages and T-regulatory cell infiltration.
    Conclusion: The m6A signature had a prominent capacity to evaluate OS and characterize the tumor immune microenvironment of HCC, which may serve as a useful approach for risk stratification management and provide a valuable clue to choosing rational therapeutic strategies.
    Keywords:  M 6 A modification; cancer immunity; hepatocellular carcinoma; immunosuppressive microenvironment; overall survival
    DOI:  https://doi.org/10.3389/fimmu.2023.1227593
  14. Int Immunopharmacol. 2023 Sep 13. pii: S1567-5769(23)01204-3. [Epub ahead of print]124(Pt A): 110879
      BACKGROUND: Ovarian cancer (OC) is one of the most common gynecological malignant cancers. Our previous work confirmed that circNFIX acted as an oncogene in OC, which could promote malignant proliferation, metastasis and angiogenesis. However, the role and mechanism of circNFIX in OC immune escape remain unclear.METHODS: The RNA and protein levels were determined by qRT-PCR and western blot assays. The malignant phenotypes were tested by cell count kit-8, EdU staining, flow cytometry and transwell assays. The immune cytokines levels were measured by ELISA analysis. Molecular interactions were verified employing RNA immunoprecipitation, meRIP and dual luciferase methods. In vivo validation was performed by xenograft tumor and lung metastasis model. Hematoxylin & eosin and immunohistochemistry staining were used to observe the pathological changes.
    RESULTS: The levels of circNFIX, PD-L1, and IL-6R were upregulated in OC tissues and cell lines, while miR-647 was downregulated. Functional assays showed that loss of circNFIX suppressed the growth, metastasis and immune escape of OC cells both in vitro and in vivo. On the molecular level, the m6A modification of circNFIX was elevated in OC cells, and its expression was positively correlated to m6A modification and depended on IGF2BP1 ∼ 3 recognition. Moreover, circNFIX acted as a competing endogenous RNA for miR-647 to upregulate IL-6R expression, thereby activating JAK/STAT3 signaling and elevating PD-L1 expression. Rescue assays revealed that co-silencing of miR-647 reversed the antitumor effects of circNFIX knockdown on cell proliferation, metastasis and immune escape of OC cells.
    CONCLUSION: This study provided a comprehensive understanding of the molecular mechanism about circNFIX in OC, demonstrating m6A activated-circNFIX accelerated OC development and immune escape via regulating miR-647/IL-6R/PD-L1 pathway.
    Keywords:  IGF2BP2; Immune escape; Ovarian cancer; circNFIX; m6A modification; miR-647
    DOI:  https://doi.org/10.1016/j.intimp.2023.110879
  15. Biol Direct. 2023 Sep 14. 18(1): 58
      M7G modification, known as one of the common post-transcriptional modifications of RNA, is present in many different types of RNAs. With the accurate identification of m7G modifications within RNAs, their functional roles in the regulation of gene expression and different physiological functions have been revealed. In addition, there is growing evidence that m7G modifications are crucial in the emergence of cancer. Here, we review the most recent findings regarding the detection techniques, distribution, biological functions and Regulators of m7G. We also summarize the connections between m7G modifications and cancer development, drug resistance, and tumor microenvironment as well as we discuss the research's future directions and trends.
    Keywords:  Carcinoma; Immune microenvironment; N7-methylguanosine; RNA methylation modification
    DOI:  https://doi.org/10.1186/s13062-023-00414-5
  16. Genes Dis. 2024 Mar;11(2): 890-920
      m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
    Keywords:  Cancer; IGF2BP; Immunosuppressive TME; Molecular mechanism; Therapy; m6A
    DOI:  https://doi.org/10.1016/j.gendis.2023.06.017
  17. Genes Dis. 2024 Mar;11(2): 993-1008
      Chronic myeloid leukemia (CML) is a common adult leukemia. Both the acute phase of the disease and the adverse effects of anti-cancer treatments can lead to a poor prognosis. The N6-methyladenine (m6A) modification plays an important regulatory role in various physiological and pathological processes. KIAA1429 is a known m6A regulator, but the biological role of KIAA1429 in CML is unclear. In this study, we observed that the m6A levels and KIAA1429 expression were significantly up-regulated in patients with blast phase CML. Notably, KIAA1429 regulated the total level of RNA m6A modification in the CML cells and promoted the malignant biological behaviors of CML cells, including proliferation, migration, and imatinib resistance. Inhibiting KIAA1429 in CML cells reduced the stability of RAB27B mRNA through the m6A/YTHDF1 axis, consequently inhibiting CML proliferation and drug efflux, ultimately increasing the sensitivity of CML cells to imatinib. Moreover, the knockdown of RAB27B also inhibited the proliferation and drug resistance of CML cells and promoted their apoptosis. Rucaparib, a recently developed anti-cancer agent, suppressed the expression of KIAA1429 and CML cell proliferation and promoted cell apoptosis. Rucaparib also inhibited the tumorigenesis of CML cells in vivo. The combined use of rucaparib and imatinib enhanced the sensitivity of CML cells to imatinib. Our study provides evidence that elevated KIAA1429 expression in the blast phase of CML enhances the stability of RAB27B mRNA through the m6A/YTHDF1 axis to up-regulate RAB27B expression, thereby promoting CML progression. Rucaparib exerts inhibitory effects on KIAA1429 expression and thus reduces CML progression.
    Keywords:  Chronic myeloid leukemia; KIAA1429; N6-methyladenine; RAB27B; Rucaparib; YTHDF1
    DOI:  https://doi.org/10.1016/j.gendis.2023.03.016
  18. Clin Transl Med. 2023 Sep;13(9): e1389
      Neutrophil extracellular traps (NETs), released by polymorphonuclear neutrophils (PMNs), exert a robust antimicrobial function in infectious diseases such as sepsis. NETs also contribute to the pathogenesis and exacerbation of sepsis. Although the lung is highly vulnerable to infections, few studies have explored the role of NETs in sepsis-induced acute lung injury (SI-ALI). We demonstrate that NETs induce SI-ALI via enhanced ferroptosis in alveolar epithelial cells. Our findings reveal that the excessive release of NETs in patients and mice with SI-ALI is accompanied by upregulation of ferroptosis depending on METTL3-induced m6A modification of hypoxia-inducible factor-1α (HIF-1α) and subsequent mitochondrial metabolic reprogramming. In addition to conducting METTL3 overexpression and knockdown experiments in vitro, we also investigated the impact of ferroptosis on SI-ALI caused by NETs in a caecum ligation and puncture (CLP)-induced SI-ALI model using METTL3 condition knockout (CKO) mice and wild-type mice. Our results indicate the crucial role of NETs in the progression of SI-ALI via NET-activated METTL3 m6A-IGF2BP2-dependent m6A modification of HIF-1α, which further contributes to metabolic reprogramming and ferroptosis in alveolar epithelial cells.
    Keywords:  N6-methylation; ferroptosis; metabolic reprogramming; neutrophil extracellular traps; sepsis-induced acute lung injury
    DOI:  https://doi.org/10.1002/ctm2.1389
  19. Nat Struct Mol Biol. 2023 Sep 14.
      Stress granules are biomolecular condensates composed of protein and mRNA. One feature of stress granule-enriched mRNAs is that they are often longer than average. Another feature of stress granule-enriched mRNAs is that they often contain multiple N6-methyladenosine (m6A) residues. m6A is bound by the YTHDF proteins, creating mRNA-protein complexes that partition into stress granules in mammalian cells. Here we show that length-dependent enrichment of mRNAs in stress granules is mediated by m6A. Long mRNAs often contain one or more long exons, which are preferential sites of m6A formation. In mammalian cells lacking m6A, long mRNAs no longer show preferential stress granule enrichment. Furthermore, we show that m6A abundance more strongly predicts which short or long mRNAs are enriched in stress granules, rather than length alone. Thus, mRNA length correlates with mRNA enrichment in stress granules owing to the high prevalence of m6A in long mRNAs.
    DOI:  https://doi.org/10.1038/s41594-023-01089-2
  20. BMC Genomics. 2023 Sep 12. 24(1): 539
      BACKGROUND: 5-methylcytosine (m5C) modification is widely associated with many biological and pathological processes. However, knowledge of m5C modification in osteoarthritis (OA) remains lacking. Thus, our study aimed to identify common m5C features in OA.RESULTS: In the present study, we identified 1395 differentially methylated genes (DMGs) and 1673 differentially expressed genes (DEGs) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) and RNA-sequencing. A co-expression analysis of DMGs and DEGs showed that the expression of 133 genes was significantly affected by m5C methylation. A protein-protein interaction network of the 133 genes was constructed using the STRING database, and the cytoHubba plug-in of Cytoscape was used to hub genes were screen out 11 hub genes, including MMP14, VTN, COL15A1, COL6A2, SPARC, COL5A1, COL6A3, COL6A1, COL8A2, ADAMTS2 and COL7A1. The Pathway enrichment analysis by the ClueGO and CluePedia plugins in Cytoscape showed that the hub genes were significantly enriched in collagen degradation and extracellular matrix degradation.
    CONCLUSIONS: Our study indicated that m5C modification might play an important role in OA pathogenesis, and the present study provides worthwhile insight into identifying m5C-related therapeutic targets in OA.
    Keywords:  Collagen degradation; MeRIP-seq; Methylome profile; Osteoarthritis; m5C methylation
    DOI:  https://doi.org/10.1186/s12864-023-09651-4