Exp Hematol. 2025 Jan 07. pii: S0301-472X(25)00002-5. [Epub ahead of print] 104711
Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation towards myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health. HSC aging is driven by a range of mechanisms involving both intrinsic and extrinsic factors, such as DNA damage accumulation, epigenetic remodeling, inflammaging and metabolic regulation. In this review, we summarize the update understanding of age-related changes in HSPCs and the mechanisms underlie the aging process in mammalian models, especially in human study. Additionally, we provide insights into potential therapeutic strategies to counteract aging process and enhance HSC regenerative capacity, which will support therapeutic interventions and promote healthy aging.