bims-sikglu Biomed News
on Salt inducible kinases in glucose metabolism
Issue of 2024‒05‒19
two papers selected by
Dipsikha Biswas, Københavns Universitet and Maria Madrazo i Montoya, Københavns Universitet



  1. Chembiochem. 2024 May 13. e202400214
      Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease.  Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as  highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understandings of the role of 14-3-3-based protein regulation.
    Keywords:  molecular glues * fragment-based drug discovery * cooperativity * structure-based molecule design
    DOI:  https://doi.org/10.1002/cbic.202400214
  2. bioRxiv. 2024 Apr 29. pii: 2024.04.29.591168. [Epub ahead of print]
      The liver acts as a master regulator of metabolic homeostasis in part by performing gluconeogenesis. This process is dysregulated in type 2 diabetes, leading to elevated hepatic glucose output. The parenchymal cells of the liver (hepatocytes) are heterogeneous, existing on an axis between the portal triad and the central vein, and perform distinct functions depending on location in the lobule. Here, using single cell analysis of hepatocytes across the liver lobule, we demonstrate that gluconeogenic gene expression ( Pck1 and G6pc ) is relatively low in the fed state and gradually increases first in the periportal hepatocytes during the initial fasting period. As the time of fasting progresses, pericentral hepatocyte gluconeogenic gene expression increases, and following entry into the starvation state, the pericentral hepatocytes show similar gluconeogenic gene expression to the periportal hepatocytes. Similarly, pyruvate-dependent gluconeogenic activity is approximately 10-fold higher in the periportal hepatocytes during the initial fasting state but only 1.5-fold higher in the starvation state. In parallel, starvation suppresses canonical beta-catenin signaling and modulates expression of pericentral and periportal glutamine synthetase and glutaminase, resulting in an enhanced pericentral glutamine-dependent gluconeogenesis. These findings demonstrate that hepatocyte gluconeogenic gene expression and gluconeogenic activity are highly spatially and temporally plastic across the liver lobule, underscoring the critical importance of using well-defined feeding and fasting conditions to define the basis of hepatic insulin resistance and glucose production.
    DOI:  https://doi.org/10.1101/2024.04.29.591168