bims-smemid Biomed News
on Stress metabolism in mitochondrial dysfunction
Issue of 2025–02–23
six papers selected by
Deepti Mudartha, The International Institute of Molecular Mechanisms and Machines



  1. bioRxiv. 2025 Feb 01. pii: 2025.01.31.635929. [Epub ahead of print]
      Mitochondrial stress activates the integrated stress response (ISR) and triggers cell-cell communication through secretion of the metabokine growth differentiation factor 15 (GDF15). However, the gene network underlying the ISR remains poorly defined, particularly across metabolically diverse cellular states and tissues. Using RNAseq data from fibroblasts subjected to metabolic perturbations, we develop an ISR GDF15 index quantifying the GDF15 arm of the ISR activation in human cells. Validation of ISR GDF15 index across 44 postmortem human tissues illustrates how this index can be applied to investigate tissue-specific and age-related ISR activation.
    DOI:  https://doi.org/10.1101/2025.01.31.635929
  2. Mol Neurodegener. 2025 Feb 19. 20(1): 20
      The integrated stress response (ISR) is a conserved network in eukaryotic cells that mediates adaptive responses to diverse stressors. The ISR pathway ensures cell survival and homeostasis by regulating protein synthesis in response to internal or external stresses. In recent years, the ISR has emerged as an important regulator of the central nervous system (CNS) development, homeostasis and pathology. Dysregulation of ISR signaling has been linked to several neurodegenerative diseases. Intriguingly, while acute ISR provide neuroprotection through the activation of cell survival mechanisms, prolonged ISR can promote neurodegeneration through protein misfolding, oxidative stress, and mitochondrial dysfunction. Understanding the molecular mechanisms and dynamics of the ISR in neurodegenerative diseases aids in the development of effective therapies. Here, we will provide a timely review on the cellular and molecular mechanisms of the ISR in neurodegenerative diseases. We will highlight the current knowledge on the dual role that ISR plays as a protective or disease worsening pathway and will discuss recent advances on the therapeutic approaches that have been developed to target ISR activity in neurodegenerative diseases.
    DOI:  https://doi.org/10.1186/s13024-025-00811-6
  3. bioRxiv. 2025 Feb 08. pii: 2025.02.03.635951. [Epub ahead of print]
      Mitochondria are a diverse family of organelles that specialize to accomplish complimentary functions 1-3 . All mitochondria share general features, but not all mitochondria are created equal 4 .Here we develop a quantitative pipeline to define the degree of molecular specialization among different mitochondrial phenotypes - or mitotypes . By distilling hundreds of validated mitochondrial genes/proteins into 149 biologically interpretable MitoPathway scores (MitoCarta 3.0 5 ) the simple mitotyping pipeline allows investigators to quantify and interpret mitochondrial diversity and plasticity from transcriptomics or proteomics data across a variety of natural and experimental contexts. We show that mouse and human multi-organ mitotypes segregate along two main axes of mitochondrial specialization, contrasting anabolic (liver) and catabolic (brain) tissues. In cultured primary human fibroblasts exhibiting robust time-dependent and treatment-induced metabolic plasticity 6-8 , we demonstrate how the mitotype of a given cell type recalibrates i) over time in parallel with hallmarks of aging, and ii) in response to genetic, pharmacological, and metabolic perturbations. Investigators can now use MitotypeExplorer.org and the associated code to visualize, quantify and interpret the multivariate space of mitochondrial biology.
    DOI:  https://doi.org/10.1101/2025.02.03.635951
  4. Trends Cell Biol. 2025 Feb 20. pii: S0962-8924(24)00272-1. [Epub ahead of print]
      Mitochondria harbor their own DNA (mtDNA), which codifies essential proteins of the oxidative phosphorylation (OXPHOS) system and locally feeds them to their surrounding inner mitochondrial membrane (IMM), according to the 'sphere of influence' theory. mtDNA is compacted into nucleoids, which are tethered to the IMM and distributed throughout the mitochondrial network. Some nucleoid subpopulations present distinct intramitochondrial positioning during fission and their correct positioning is associated with mtDNA segregation and selective degradation. This opinion article focuses on different mechanisms that could control nucleoid positioning through intramitochondrial trafficking, either by cristae reshaping or by intercompartment-driven mechanisms involving the mitochondrial membranes and extramitochondrial elements. Understanding nucleoid trafficking promises insights into mitochondrial dysfunction in pathologies with mtDNA distribution and segregation issues.
    Keywords:  cristae reshaping; mitochondrial nucleoid; mtDNA inheritance; nucleoid dynamics; sphere of influence
    DOI:  https://doi.org/10.1016/j.tcb.2024.12.007
  5. J Biol Chem. 2025 Feb 13. pii: S0021-9258(25)00155-3. [Epub ahead of print] 108307
      The constant replenishment of tricarboxylic acid (TCA) cycle intermediates, or anaplerosis, is crucial to ensure optimal TCA cycle activity in times of high biosynthetic demand. In inborn metabolic diseases, anaplerosis is often affected, leading to impaired TCA cycle flux and ATP production. In these cases, anaplerotic compounds can be a therapy option. Triheptanoin, a triglyceride containing three heptanoate chains, is thought to be anaplerotic through production of propionyl- and acetyl-CoA. However, the precise mechanism underlying its anaplerotic action remains poorly understood. In this study, we performed a comprehensive in vitro analysis of heptanoate metabolism and compared it to that of octanoate, an even-chain fatty acid which only provides acetyl-CoA. Using stable isotope tracing, we demonstrate that both heptanoate and octanoate contribute carbon to the TCA cycle in HEK293T cells, confirming direct anaplerosis. Furthermore, by using labeled glucose and glutamine, we show that heptanoate and octanoate decrease the contribution of glucose-derived carbon and increase the influx of glutamine-derived carbon into the TCA cycle. Our findings also point towards a change in redox homeostasis, indicated by an increased NAD+/NADH ratio, accompanied by a decreased lactate/pyruvate ratio and increased de novo serine biosynthesis. Taken together, these results highlight the broad metabolic effects of heptanoate and octanoate supplementation, suggesting that therapeutic efficacy may strongly depend on specific disease pathophysiology. Furthermore, they underline the need for careful selection of fatty acid compound and concentration to optimize anaplerotic action.
    Keywords:  Anaplerosis; fatty acids; isotopic tracer; mass spectrometry (MS); metabolic disease; metabolomics; redox regulation
    DOI:  https://doi.org/10.1016/j.jbc.2025.108307
  6. Nat Commun. 2025 Feb 20. 16(1): 1804
      Genetic mutations in apoptosis-inducing factor (AIF) have a strong association with mitochondrial disorders; however, little is known about the aberrant splicing variants in affected patients and how these variants contribute to mitochondrial dysfunction and brain development defects. We identified pathologic AIF3/AIF3-like splicing variants in postmortem brain tissues of pediatric individuals with mitochondrial disorders. Mutations in AIFM1 exon-2/3 increase splicing risks. AIF3-splicing disrupts mitochondrial complexes, membrane potential, and respiration, causing brain development defects. Mechanistically, AIF is a mammalian NAD(P)H dehydrogenase and possesses glutathione reductase activity controlling respiratory chain functions and glutathione regeneration. Conversely, AIF3, lacking these activities, disassembles mitochondrial complexes, increases ROS generation, and simultaneously hinders antioxidant defense. Expression of NADH dehydrogenase NDI1 restores mitochondrial functions partially and protects neurons in AIF3-splicing mice. Our findings unveil an underrated role of AIF as a mammalian mitochondrial complex-I alternative NAD(P)H dehydrogenase and provide insights into pathologic AIF-variants in mitochondrial disorders and brain development.
    DOI:  https://doi.org/10.1038/s41467-025-57081-5