Int J Mol Sci. 2025 Nov 24. pii: 11349. [Epub ahead of print]26(23):
Inhibition of respiratory chain complex I (NADH dehydrogenase) is a widely encountered biochemical consequence of drug intoxication and a primary consequence of mtDNA mutations and other mitochondrial defects. In an organ-selective form, it is also deployed as antidiabetic pharmacological treatment. Complex I inhibition evokes a pronounced metabolic reprogramming of uncertain purposefulness, as in several cases, anabolism appears to be fostered in a state of bioenergetic shortage. A hallmark of complex I inhibition is the enhanced biosynthesis of serine, usually accompanied by an induction of folate-converting enzymes. Here, we have revisited the differential transcriptional induction of these metabolic pathways in three published models of selective complex I inhibition: MPP-treated neuronal cells, methionine-restricted rats, and patient fibroblasts harboring an NDUFS2 mutation. We find that in a coupled fashion, serinogenesis and circular folate cycling provide an unrecognized alternative pathway of complete glucose oxidation that is mostly dependent on NADP instead of the canonic NAD cofactor (NADP:NAD ≈ 2:1) and thus evades the shortage of oxidized NAD produced by complex I inhibition. In contrast, serine utilization for anabolic purposes and C1-folate provision for S-adenosyl-methionine production and transsulfuration cannot explain the observed transcriptional patterns, while C1-folate provision for purine biosynthesis did occur in some models, albeit not universally. We conclude that catabolic glucose oxidation to CO2, linked with NADPH production for indirect downstream respiration through fatty acid cycling, is the general purpose of the remarkably strong induction of serinogenesis after complex I inhibition.
Keywords: NADPH-FADH2 axis; Parkinson’s disease; fatty acid cycling; futile cycle; glycolytic inhibition; metabolic reprogramming; metformin; mitochondrial disease; oxidative stress