Front Oncol. 2022 ;12
979154
Tumor acidity is one of the cancer hallmarks and is associated with metabolic reprogramming and the use of glycolysis, which results in a high intracellular lactic acid concentration. Cancer cells avoid acid stress major by the activation and expression of proton and lactate transporters and exchangers and have an inverted pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The shift in the tumor acid-base balance promotes proliferation, apoptosis avoidance, invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment resistance. For example, weak-base chemotherapeutic agents may have a substantially reduced cellular uptake capacity due to "ion trapping". Lactic acid negatively affects the functions of activated effector T cells, stimulates regulatory T cells, and promotes them to express programmed cell death receptor 1. On the other hand, the inversion of pH gradient could be a cancer weakness that will allow the development of new promising therapies, such as tumor-targeted pH-sensitive antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The regulation of tumor pH levels by pharmacological inhibition of pH-responsible proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor acidity. Buffering therapy does not counteract standard treatment methods and can be used in combination to increase effectiveness. However, the mechanisms of the anticancer effect of buffering therapy are still unclear, and more research is needed. We have attempted to summarize the basic knowledge about tumor acidity.
Keywords: acidity; cancer; hallmark; metabolism; treatment target