bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2023‒06‒18
six papers selected by
Cristina Muñoz Pinedo
L’Institut d’Investigació Biomèdica de Bellvitge


  1. Proteomics. 2023 Jun 13. e2100314
      Cancer cachexia is a wasting syndrome characterised by the loss of fat and/or muscle mass in advanced cancer patients. It has been well-established that cancer cells themselves can induce cachexia via the release of several pro-cachectic and pro-inflammatory factors. However, it is unclear how this process is regulated and the key cachexins that are involved. In this study, we validated C26 and EL4 as cachexic and non-cachexic cell models, respectively. Treatment of adipocytes and myotubes with C26 conditioned medium induced lipolysis and atrophy, respectively. We profiled soluble secreted proteins (secretome) as well as small extracellular vesicles (sEVs) released from cachexia-inducing (C26) and non-inducing (EL4) cancer cells by label-free quantitative proteomics. A total of 1268 and 1022 proteins were identified in the secretome of C26 and EL4, respectively. Furthermore, proteomic analysis of sEVs derived from C26 and EL4 cancer cells revealed a distinct difference in the protein cargo. Functional enrichment analysis using FunRich highlighted the enrichment of proteins that are implicated in biological processes such as muscle atrophy, lipolysis, and inflammation in both the secretome and sEVs derived from C26 cancer cells. Overall, our characterisation of the proteomic profiles of the secretory factors and sEVs from cachexia-inducing and non-inducing cancer cells provides insights into tumour factors that promote weight loss by mediating protein and lipid loss in various organs and tissues. Further investigation of these proteins may assist in highlighting potential therapeutic targets and biomarkers of cancer cachexia.
    Keywords:  cancer cachexia; lipolysis; muscle atrophy; secretory proteins; small extracellular vesicles
    DOI:  https://doi.org/10.1002/pmic.202100314
  2. Sci Rep. 2023 Jun 14. 13(1): 9671
      Multiple myeloma (MM) is the second most common hematological malignancy, and angiogenesis determines its progression. In the tumor microenvironment, normal fibroblasts (NFs) are transformed into cancer-associated fibroblasts (CAFs), which can promote angiogenesis. Microribonucleic acid-21 (miR-21) is highly expressed in various tumors. However, research on the relationship between tumor angiogenesis and miR-21 is rare. We analyzed the relationship between miR-21, CAFs, and angiogenesis in MM. NFs and CAFs were isolated from the bone marrow fluids of patients with dystrophic anemia and newly-diagnosed MM. Co-culturing of CAF exosomes with multiple myeloma endothelial cells (MMECs) showed that CAF exosomes were able to enter MMECs in a time-dependent manner and initiate angiogenesis by promoting proliferation, migration, and tubulogenesis. We found that miR-21 was abundant in CAF exosomes, entering MMECs and regulating angiogenesis in MM. By transfecting NFs with mimic NC, miR-21 mimic, inhibitor NC, and miR-21 inhibitor, we found that miR-21 significantly increased the expression of alpha-smooth muscle actin and fibroblast activation protein in NFs. Our results showed that miR-21 can transform NFs into CAFs, and that CAF exosomes promote angiogenesis by carrying miR-21 into MMECs. Therefore, CAF-derived exosomal miR-21 may serve as a novel diagnostic biomarker and therapeutic target for MM.
    DOI:  https://doi.org/10.1038/s41598-023-36092-6
  3. Cancer Cell. 2023 Jun 12. pii: S1535-6108(23)00182-4. [Epub ahead of print]
      Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.
    Keywords:  LKB1; MCT4; PD-1; T cell activation; immunotherapy resistance; lactate; lung adenocarcinoma; macrophage polarization; metabolism
    DOI:  https://doi.org/10.1016/j.ccell.2023.05.015
  4. Front Oncol. 2023 ;13 1197542
      IL-32 is a pro-inflammatory cytokine expressed by several types of cancer cells and immune cells. Currently, no treatment targeting IL-32 is available, and its intracellular and exosomal localization make IL-32 less accessible to drugs. We previously showed that hypoxia promotes IL-32 expression through HIF1α in multiple myeloma cells. Here, we demonstrate that high-speed translation and ubiquitin-dependent proteasomal degradation lead to a rapid IL-32 protein turnover. We find that IL-32 protein half-life is regulated by the oxygen-sensing cysteine-dioxygenase ADO and that deubiquitinases actively remove ubiquitin from IL-32 and promote protein stability. Deubiquitinase inhibitors promoted the degradation of IL-32 and may represent a strategy for reducing IL-32 levels in multiple myeloma. The fast turnover and enzymatic deubiquitination of IL-32 are conserved in primary human T cells; thus, deubiquitinase inhibitors may also affect T-cell responses in various diseases.
    Keywords:  ADO; IL-32; T cells; deubiquitinase (DUB); multiple myeloma; oxygen stress; proteasome; ubiquitin (UB)
    DOI:  https://doi.org/10.3389/fonc.2023.1197542
  5. Mol Immunol. 2023 Jun 07. pii: S0161-5890(23)00114-1. [Epub ahead of print]160 12-19
      Hypoxia inducible factor-1ɑ (HIF-1ɑ) is the regulatory subunit of the HIF-1 transcription factor that is a regulator of cell physiological responses to hypoxia. However, the biological function and regulatory mechanisms controlling HIF-1α in normoxia are poorly understood. Here, we first examined the role of HIF-1α in the inflammatory activation of A549 human lung carcinoma cells in normoxia. Inactivation of the HIF-1α gene by CRISPR/Cas9 reduced the secretion of CXCL8 induced by stimulation with a cytokine mixture (CM) consisting of IL-1, TNFα and IFNγ. We next determined that cytokines act co-operatively to induce expression and nuclear accumulation of HIF-1α. To investigate the signalling mechanisms by which cytokines induce HIF-1α in normoxia, pharmacological inhibitors against the Jak/STAT, PI3K, NFκB, MEK/ERK, and JNK pathways were used. Inhibition of the Jak/STAT and JNK pathways inhibited the induction and nuclear accumulation of HIF-1ɑ by cytokines. Furthermore, siRNA knockdown of STAT1 and JNK also reduced the induction of HIF-1α by cytokines. Finally, pharmacological inhibition of these two pathways also blocked the trans-activation of HIF-1. These findings have implications for understanding the role and regulatory mechanisms of HIF-1ɑ in inflammation and cell biology.
    Keywords:  Cell signaling; Cytokine; Hypoxia inducible factor (HIF); Inflammation; Lung epithelial cells
    DOI:  https://doi.org/10.1016/j.molimm.2023.06.001
  6. Cell Rep. 2023 Jun 12. pii: S2211-1247(23)00647-2. [Epub ahead of print]42(6): 112636
      Obesity-mediated hypoxic stress underlies inflammation, including interferon (IFN)-γ production by natural killer (NK) cells in white adipose tissue. However, the effects of obesity on NK cell IFN-γ production remain obscure. Here, we show that hypoxia promotes xCT-mediated glutamate excretion and C-X-C motif chemokine ligand 12 (CXCL12) expression in white adipocytes, resulting in CXCR4+ NK cell recruitment. Interestingly, this spatial proximity between adipocytes and NK cells induces IFN-γ production in NK cells by stimulating metabotropic glutamate receptor 5 (mGluR5). IFN-γ then triggers inflammatory activation of macrophages and augments xCT and CXCL12 expression in adipocytes, forming a bidirectional pathway. Genetic or pharmacological inhibition of xCT, mGluR5, or IFN-γ receptor in adipocytes or NK cells alleviates obesity-related metabolic disorders in mice. Consistently, patients with obesity showed elevated levels of glutamate/mGluR5 and CXCL12/CXCR4 axes, suggesting that a bidirectional pathway between adipocytes and NK cells could be a viable therapeutic target in obesity-related metabolic disorders.
    Keywords:  CP: Immunology; CP: Metabolism; glutamate; interferon-γ; metabolic disorders; metabotropic glutamate receptor; natural killer cells; obesity
    DOI:  https://doi.org/10.1016/j.celrep.2023.112636