bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2024‒07‒28
eight papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. Eur J Nucl Med Mol Imaging. 2024 Jul 26.
      PURPOSE: Cachexia is a complex syndrome characterized by unintentional weight loss, progressive muscle wasting and loss of appetite. Anti-Fn14 antibody (mAb 002) targets the TWEAK receptor (Fn14) in murine models of cancer cachexia and can extend the lifespan of mice by restoring the body weight of mice. Here, we investigated glucose metabolic changes in murine models of cachexia via [18F]FDG PET imaging, to explore whether Fn14 plays a role in the metabolic changes that occur during cancer cachexia.METHODS: [18F]FDG PET/MRI imaging was performed in cachexia-inducing tumour models versus models that do not induce cachexia. SUVaverage was calculated for all tumours via volume of interest (VOI) analysis of PET/MRI overlay images using PMOD software.
    RESULTS: [18F]FDG PET imaging demonstrated increased tumour and brain uptake in cachectic versus non-cachectic tumour-bearing mice. Therapy with mAb 002 was able to reduce [18F]FDG uptake in tumours (P < 0.05, n = 3). Fn14 KO tumours did not induce body weight loss and did not show an increase in [18F]FDG tumour and brain uptake over time. In non-cachectic mice bearing Fn14 KO tumours, [18F]FDG tumour uptake was significantly lower (P < 0.01) than in cachectic mice bearing Fn14 WT counterparts. As a by-product of glucose metabolism, l-lactate production was also increased in cachexia-inducing tumours expressing Fn14.
    CONCLUSION: Our results demonstrate that Fn14 receptor activation is linked to glucose metabolism of cachexia-inducing tumours.
    Keywords:  002 antibody; Cancer cachexia; Fn14 receptor; TWEAK; [18F]FDG PET
    DOI:  https://doi.org/10.1007/s00259-024-06836-1
  2. Front Nutr. 2024 ;11 1404063
      Background: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that often coexists with malnutrition during acute exacerbation (AECOPD) and significantly affects the prognosis. Previous studies have shown that growth differentiation factor 15 (GDF15) levels promote appetite suppression, weight loss, and muscle weakness, and are markedly high in peripheral blood following inflammatory stimulation. However, it is still unknown whether serum GDF15 levels can be used to predict malnutrition in patients with AECOPD.Methods: A total of 142 patients admitted to the Department of Respiratory Medicine at Anshun People's Hospital between December 2022 and August 2023 were selected for this study. The participants were divided into two groups: malnutrition group (n = 44) and non-malnutrition group (n = 98) based on a body mass index (BMI) < 18.5 kg/m2, according to the Global Leadership Initiative on Malnutrition (GLIM) criteria. Serum GDF15 levels were measured using the enzyme-linked immunosorbent assay (ELISA) and compared between the two groups. Spearman correlation analysis was used to examine the association between serum GDF15 levels, baseline data, and clinical indicators. Binary logistic regression was used to identify the independent risk factors for AECOPD combined with malnutrition. The predictive value of serum GDF15, albumin (ALB), and a combination of these was evaluated to identify malnutrition in patients with AECOPD using a receiver operating characteristic (ROC) curve.
    Results: Serum GDF15 levels in patients with malnutrition and AECOPD were significantly higher than those in patients without malnutrition, whereas the serum ALB levels were significantly lower than those in patients without malnutrition (p < 0.001). Moreover, serum GDF15 levels were negatively correlated with BMI (r = -0.562, p < 0.001), mid-arm circumference (r = -0.505, p < 0.001), calf circumference (r = -0.490, p < 0.001), total protein (r = -0.486, p < 0.001), ALB (r = -0.445, p < 0.001), and prognostic nutritional index (r = -0.276, p = 0.001), and positively correlated with C-reactive protein (r = 0.318, p < 0.001), COPD assessment test score (r = 0.286, p = 0.001), modified medical research council classification (r = 0.310, p < 0.001), and global initiative for chronic obstructive pulmonary disease grade (r = 0.177, p = 0.035). Furthermore, serum GDF15 levels were an independent risk factor for malnutrition in patients with AECOPD (OR = 1.010, 95% CI, 1.003∼1.016). The optimal cut-off value of serum GDF15 level was 1,092.885 pg/mL, with a sensitivity of 65.90% and a specificity of 89.80%, while the serum ALB level was 36.15 g/L, with a sensitivity of 86.40% and a specificity of 65.00%, as well as a combined sensitivity of 84.10% and a specificity of 73.90%. Serum GDF15 and serum ALB levels had a good predictive ability (AUC = 0.856, AUC = 0.887), and the ROC revealed a greater combined prediction value for the two (AUC = 0.935).
    Conclusion: Serum GDF15 levels could be used as a potential biomarker in the prediction of malnutrition in patients with AECOPD, offering a guidance for future clinical evaluation of malnutrition.
    Keywords:  acute exacerbation; biomarker; chronic obstructive pulmonary disease; growth differentiation factor 15; malnutrition
    DOI:  https://doi.org/10.3389/fnut.2024.1404063
  3. J Surg Res. 2024 Jul 22. pii: S0022-4804(24)00331-7. [Epub ahead of print]301 413-422
      INTRODUCTION: In recent years, a number of studies have demonstrated that hypoxia reoxygenation (HR) induced by ischemia postconditioning (IPC) reduces endothelial barrier dysfunction and inflammation in various models. When HR occurs, the P38 mitogen-activated protein kinase (P38 MAPK) breaks down the endothelial barrier. But no study has clearly clarified the effect of hypoxia postconditioning (HPC) on P38 MAPK in human dermal microvascular endothelial cells. Therefore, we investigated the function of HPC on P38 MAPK during HR in vitro.METHODS: Human dermal microvascular endothelial cells were cultured in a hypoxic incubator for 8 h. Then cells were reperfused for 12 h (reoxygenation) or postconditioned by 5 min of reoxygenation and 5 min of re-hypoxia 3 times followed by 11.5 h reoxygenation. SB203580 was used as an inhibitor of P38 MAPK. Cell counting kit-8 assay kits were employed to detect cell activity. The corresponding levels of IL-6, IL-8 and IL-1β were examined via Enzyme-Linked ImmunoSorbent Assay. The endothelial barrier was evaluated using fluorescein isothiocyanate-dextran leakage assay. Western blot was used to detect claudin-5, phosphorylation of P38 MAPK (P-P38 MAPK) and P38 MAPK expression. Claudin-5 localization was studied by immunofluorescence.
    RESULTS: HR induced endothelial barrier hyperpermeability, elevated inflammation levels, and increased the P-P38 MAPK. But HPC reduced cell injury and maintained the integrity of the endothelial barrier while inhibiting P-P38 MAPK and increasing expression of claudin-5. HPC redistributed claudin-5 in a continuous and linear pattern on the cell membrane.
    CONCLUSIONS: HPC protects against HR induced downregulation and redistribution of claudin-5 by inhibiting P-P38 MAPK.
    Keywords:  Claudin-5; Endothelial barrier permeability; Hypoxia postconditioning; Hypoxia reoxygenation; P38 MAPK
    DOI:  https://doi.org/10.1016/j.jss.2024.06.007
  4. CPT Pharmacometrics Syst Pharmacol. 2024 Jul 23.
      AZD0171 (INN: Falbikitug) is being developed as a humanized monoclonal antibody (mAb), immunoglobulin G subclass 1 (IgG1), which binds specifically to the immunosuppressive human cytokine leukemia inhibitory factor (LIF) and inhibits downstream signaling by blocking recruitment of glycoprotein 130 (gp130) to the LIF receptor (LIFR) subunit (gp190) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and is intended to treat adult participants with advanced solid tumors. LIF is a pleiotropic cytokine (and a member of the IL-6 family of cytokines) involved in many physiological and pathological processes and is highly expressed in a subset of solid tumors, including non-small cell lung cancer (NSCLC), colon, ovarian, prostate, and pancreatic cancer. The aim of this work was to develop a mechanistic PK/PD model to investigate the effect of AZD0171 on tumor LIF levels, predict the level of downstream signaling complex (LIF:LIFR:gp130) inhibition, and examine the dose-response relationship to support dose selection for a Phase II clinical study. Modeling results show that tumor LIF is inhibited in a dose-dependent manner with >90% inhibition for 95% of patients at the Phase II clinical dose of 1500 mg Q2W.
    DOI:  https://doi.org/10.1002/psp4.13204
  5. Mol Cancer. 2024 Jul 25. 23(1): 147
      Non-small cell lung cancer (NSCLC) constitutes one of the deadliest and most common malignancies. The LKB1/STK11 tumour suppressor is mutated in ∼ 30% of NSCLCs, typically lung adenocarcinomas (LUAD). We implemented zebrafish and human lung organoids as synergistic platforms to pre-clinically screen for metabolic compounds selectively targeting LKB1-deficient tumours. Interestingly, two kinase inhibitors, Piceatannol and Tyrphostin 23, appeared to exert synthetic lethality with LKB1 mutations. Although LKB1 loss alone accelerates energy expenditure, unexpectedly we find that it additionally alters regulation of the key energy homeostasis maintenance player leptin (LEP), further increasing the energetic burden and exposing a vulnerable point; acquired sensitivity to the identified compounds. We show that compound treatment stabilises Hypoxia-inducible factor 1-alpha (HIF1A) by antagonising Von Hippel-Lindau (VHL)-mediated HIF1A ubiquitination, driving LEP hyperactivation. Importantly, we demonstrate that sensitivity to piceatannol/tyrphostin 23 epistatically relies on a HIF1A-LEP-Uncoupling Protein 2 (UCP2) signaling axis lowering cellular energy beyond survival, in already challenged LKB1-deficient cells. Thus, we uncover a pivotal metabolic vulnerability of LKB1-deficient tumours, which may be therapeutically exploited using our identified compounds as mitochondrial uncouplers.
    Keywords:  Airway organoids; CRISPR/Cas9-mediated genome editing; Drug discovery; HIF1A-LEP-UCP2 axis; LKB1/STK11; Metabolic stress; Non-small cell lung cancer (NSCLC); Piceatannol; Tyrphostin 23; Zebrafish
    DOI:  https://doi.org/10.1186/s12943-024-02061-4
  6. Biochem Pharmacol. 2024 Jul 24. pii: S0006-2952(24)00433-7. [Epub ahead of print] 116450
      Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
    Keywords:  Cancer; Diabetes; Hyperglycemia; Inflammation; Signaling pathway
    DOI:  https://doi.org/10.1016/j.bcp.2024.116450
  7. Int J Mol Sci. 2024 Jul 15. pii: 7738. [Epub ahead of print]25(14):
      Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms relaying mitochondrial stress signals to the nucleus in mammals remain poorly defined. Here, we explored the role of protein kinase R (PKR), an eIF2α kinase activated by double-stranded RNAs (dsRNAs), in mitochondrial stress signaling. We found that UPRMT does not occur in cells lacking PKR, indicating its crucial role in this process. Mechanistically, we observed that dsRNAs accumulate within mitochondria under stress conditions, along with unprocessed mitochondrial transcripts. Furthermore, we demonstrated that accumulated mitochondrial dsRNAs in mouse embryonic fibroblasts (MEFs) deficient in the Bax/Bak channels are not released into the cytosol and do not induce the UPRMT upon mitochondrial stress, suggesting a potential role of the Bax/Bak channels in mediating the mitochondrial stress response. These discoveries enhance our understanding of how cells maintain mitochondrial integrity, respond to mitochondrial dysfunction, and communicate stress signals to the nucleus through retrograde signaling. This knowledge provides valuable insights into prospective therapeutic targets for diseases associated with mitochondrial stress.
    Keywords:  PKR; UPRMT; integrated stress response; mitochondrial dsRNAs; mitochondrial stress
    DOI:  https://doi.org/10.3390/ijms25147738
  8. Antioxidants (Basel). 2024 Jul 01. pii: 801. [Epub ahead of print]13(7):
      While cytostatic chemotherapy targeting DNA is known to induce genotoxicity, leading to cell cycle arrest and cytokine secretion, the impact of these drugs on fibroblast-epithelial cancer cell communication and metabolism remains understudied. Our research focused on human breast fibroblast RMF-621 exposed to nonlethal concentrations of cisplatin and doxorubicin, revealing reduced proliferation, diminished basal and maximal mitochondrial respirations, heightened mitochondrial ROS and lactate production, and elevated MCT4 protein levels. Interestingly, RMF-621 cells enhanced glucose uptake, promoting lactate export. Breast cancer cells MCF-7 exposed to conditioned media (CM) from drug-treated stromal RMF-621 cells increased MCT1 protein levels, lactate-driven mitochondrial respiration, and a significantly high mitochondrial spare capacity for lactate. These changes occurred alongside altered mitochondrial respiration, mitochondrial membrane potential, and superoxide levels. Furthermore, CM with doxorubicin and cisplatin increased migratory capacity in MCF-7 cells, which was inhibited by MCT1 (BAY-8002), glutamate dehydrogenase (EGCG), mitochondrial pyruvate carrier (UK5099), and complex I (rotenone) inhibitors. A similar behavior was observed in T47-D and ZR-75-1 breast cancer cells. This suggests that CM induces metabolic rewiring involving elevated lactate uptake to sustain mitochondrial bioenergetics during migration. Treatment with the mitochondrial-targeting antioxidant mitoTEMPO in RMF-621 and the addition of an anti-CCL2 antibody in the CM prevented the promigratory MCF-7 phenotype. Similar effects were observed in THP1 monocyte cells, where CM increased monocyte recruitment. We propose that nonlethal concentrations of DNA-damaging drugs induce changes in the cellular environment favoring a promalignant state dependent on mitochondrial bioenergetics.
    Keywords:  antineoplastic drugs; bioenergetics; desmoplastic lesion; immune response; mitochondrial respiration
    DOI:  https://doi.org/10.3390/antiox13070801