Appl Biochem Biotechnol. 2024 Feb 23.
Chitinases, a glycosyl hydrolase family 18 members, have a wide distribution in both prokaryotes and eukaryotes, including humans. Regardless of the absence of endogenous chitin polymer, various chitinases and chitinase-like proteins (CLPs) have been reported in mammals. However, several other carbohydrate polymers, such as hyaluronic acid and heparan sulfate, show structural similarities with chitin, which could be a potential target of chitinase and CLPs. Heparan sulfate is part of the integral membrane proteins and involves in cell adherence and migration. Hence, to demonstrate the effect of chitinase on cancer cell progression, we selected two chitinases from Serratia marcescens, ChiB and ChiC, which function as exo- and endo-chitinase, respectively. The ChiB and ChiC proteins were produced recombinantly by cloning chiB and chiC genes from Serratia marcescens. The cell viability of the Michigan Cancer Foundation-7 (MCF-7) cells was studied using different concentrations of the purified recombinant proteins. Cell viability assay was performed using 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide and water-soluble tetrazolium salt, and the effect of ChiB and ChiC on cell proliferation was studied by clonogenic assay. The cell migration study was analysed by wound healing, transwell migration, and invasion assays. Cell cycle analysis of propidium iodide-stained cells and cell proliferation markers such as pERK1/2, pAKT, and SMP30 were also done. It was observed that both ChiB and ChiC were able to impede cell viability, cell migration, and invasion significantly. These observations and our in silico molecular docking analysis suggest that ChiC is a potential anticancer agent and is more efficient than ChiB. Since the ChiC is able to inhibit both cancer cell proliferation and migration, it could be a potential candidate for the treatment of metastatic cancer.
Keywords: Anticancer agent; Chitinase; Chitinase-like proteins; Endo-chitinase; Exo-chitinase; Heparan sulfate