bims-tofagi Biomed News
on Mitophagy
Issue of 2023–12–31
four papers selected by
Michele Frison, University of Cambridge and Aitor Martínez Zarate, Euskal Herriko Unibertsitatea



  1. In Vivo. 2024 Jan-Feb;38(1):38(1): 196-204
       BACKGROUND/AIM: Mitophagy is a cardinal process for maintaining healthy and functional mitochondria. A decline in mitophagy has been associated with age-related pathologies. We aimed to investigate mitophagy changes in age-related balance problems using an animal model.
    MATERIALS AND METHODS: C57BL/6J mice were divided into young (1 month old) and aged (12 months old) groups. Balance performance, mitochondrial DNA integrity, ATP content, mitophagic process, and mitophagy-related genes and proteins were investigated in both groups.
    RESULTS: Balance and motor performance were reduced in the aged group. Mitochondrial DNA integrity and ATP content, and mRNA levels of PINK1, Parkin, BNIP3, AMBRA1, MUL1, NIX, Bcl2-L-13, Atg3, Atg5, Atg12, and Atg13 in the vestibule were significantly lower in aged mice compared with those in young mice. The protein levels of PINK1, Parkin, BNIP3, LC3B, and OXPHOS subunits were significantly decreased in the aged vestibule. Mitophagosome and mitophagolysosome counts and the immunohistochemical expression of Parkin and BNIP3 were also decreased in the saccule, utricle, and crista ampullaris in the aged group.
    CONCLUSION: A general decrease in mitophagy with aging might be attributed to a decrease in cellular function in the aged vestibule during the development of age-related balance problems.
    Keywords:  Mitophagy; aging; mice; vestibular system
    DOI:  https://doi.org/10.21873/invivo.13426
  2. Mol Cell. 2023 Dec 21. pii: S1097-2765(23)01014-6. [Epub ahead of print]
      Mitophagy mediated by BNIP3 and NIX critically regulates mitochondrial mass. Cellular BNIP3 and NIX levels are tightly controlled by SCFFBXL4-mediated ubiquitination to prevent excessive mitochondrial loss and lethal disease. Here, we report that knockout of PPTC7, a mitochondrial matrix protein, hyperactivates BNIP3-/NIX-mediated mitophagy and causes perinatal lethality that is rescued by NIX knockout in mice. Biochemically, the PPTC7 precursor is trapped by BNIP3 and NIX to the mitochondrial outer membrane, where PPTC7 scaffolds assembly of a substrate-PPTC7-SCFFBXL4 holocomplex to degrade BNIP3 and NIX, forming a homeostatic regulatory loop. PPTC7 possesses an unusually weak mitochondrial targeting sequence to facilitate its outer membrane retention and mitophagy control. Starvation upregulates PPPTC7 expression in mouse liver to repress mitophagy, which critically maintains hepatic mitochondrial mass, bioenergetics, and gluconeogenesis. Collectively, PPTC7 functions as a mitophagy sensor that integrates homeostatic and physiological signals to dynamically control BNIP3 and NIX degradation, thereby maintaining mitochondrial mass and cellular homeostasis.
    Keywords:  Cullin; FBXL4; PPTC7; metabolism; mitochondrial mass; mitophagy receptors BNIP3 and NIX; ubiquitin
    DOI:  https://doi.org/10.1016/j.molcel.2023.11.038
  3. Life Sci. 2023 Dec 22. pii: S0024-3205(23)01006-8. [Epub ahead of print] 122371
      The PHB2 gene is located on chromosome 12p13 and encodes prohibitin 2, a highly conserved protein of 37 kDa. PHB2 is a dimer with antiparallel coils, possessing a unique negatively charged region crucial for its mitochondrial molecular chaperone functions. Thus, PHB2 plays a significant role in cell life activities such as mitosis, mitochondrial autophagy, signal transduction, and cell death. This review discusses how PHB2 inhibits transcription factors or nuclear receptors to maintain normal cell functions; how PHB2 in the cytoplasm or membrane ensures normal cell mitosis and regulates cell differentiation; how PHB2 affects mitochondrial structure, function, and cell apoptosis through mitochondrial intimal integrity and mitochondrial autophagy; how PHB2 affects mitochondrial stress and inhibits cell apoptosis by regulating cytochrome c migration and other pathways; how PHB2 affects cell growth, proliferation, and metastasis through a mitochondrial independent mechanism; and how PHB2 could be applied in disease treatment. We provide a theoretical basis and an innovative perspective for a comprehensive understanding of the role and mechanism of PHB2 in cell function regulation.
    Keywords:  Cell physiology; Drug targeting; Mitophagy; PHB2; Signal transduction
    DOI:  https://doi.org/10.1016/j.lfs.2023.122371
  4. Transl Stroke Res. 2023 Dec 26.
      Subarachnoid hemorrhage (SAH) is a type of stroke with a high disability and mortality rate. Apoptosis caused by massive damage to mitochondria in neuron cells and inflammatory responses caused by high extracellular ATP lead to poor outcomes. USP30 is a deubiquitinating enzyme that inhibits mitophagy, resulting in a failure to remove damaged mitochondria in a timely manner after SAH; nevertheless, the pathway through which USP30 inhibits mitophagy is unknown. This study evaluated the neuroprotective role and possible molecular basis by which inhibiting USP30 to attenuate SAH-induced EBI by promoting neuronal mitophagy. We used an in vitro model of hemoglobin exposure and an in vivo model of intravascular perforation. Increased expression of USP30 was found after SAH in vivo and in vitro, and USP30 inhibition expression in SAH mice treated with MF094 resulted in significant improvement of neurological injury and inflammatory response and mediated good outcomes, suggesting a neuroprotective effect of USP30 inhibition. In cultured neurons, inhibition of USP30 promoted ubiquitination modification of mitochondrial fusion protein 2 (MFN2) by E3 ubiquitin ligase (Parkin), separating damaged mitochondria from the healthy mitochondrial network and prompting mitophagy, causing early clearance of damaged intracellular mitochondria, and reducing the onset of apoptosis. The high extracellular ATP environment was meliorated, reversing the conversion of microglia to a pro-inflammatory phenotype and reducing inflammatory injury. USP30 inhibition had no autophagy-promoting effect on structurally and functionally sound mitochondria and did not inhibit normal intracellular ATP production. The findings suggest that USP30 inhibition has a neuroprotective effect after SAH by promoting early mitophagy after SAH to clear damaged mitochondria.
    Keywords:  MF094; Mitochondrial fusion protein 2 (MFN2); Mitophagy; Subarachnoid hemorrhage (SAH); Ubiquitin-specific protease 30 (USP30); Ubiquitination
    DOI:  https://doi.org/10.1007/s12975-023-01228-3