bims-tofagi Biomed News
on Mitophagy
Issue of 2024–06–23
six papers selected by
Michele Frison, University of Cambridge



  1. Dev Cell. 2024 May 20. pii: S1534-5807(24)00295-8. [Epub ahead of print]
      Selective degradation of damaged mitochondria by autophagy (mitophagy) is proposed to play an important role in cellular homeostasis. However, the molecular mechanisms and the requirement of mitochondrial quality control by mitophagy for cellular physiology are poorly understood. Here, we demonstrated that primary human cells maintain highly active basal mitophagy initiated by mitochondrial superoxide signaling. Mitophagy was found to be mediated by PINK1/Parkin-dependent pathway involving p62 as a selective autophagy receptor (SAR). Importantly, this pathway was suppressed upon the induction of cellular senescence and in naturally aged cells, leading to a robust shutdown of mitophagy. Inhibition of mitophagy in proliferating cells was sufficient to trigger the senescence program, while reactivation of mitophagy was necessary for the anti-senescence effects of NAD precursors or rapamycin. Furthermore, reactivation of mitophagy by a p62-targeting small molecule rescued markers of cellular aging, which establishes mitochondrial quality control as a promising target for anti-aging interventions.
    Keywords:  PINK1; Parkin; aging; autophagy; mitophagy; nicotinamide; nicotinamide riboside; p62; rapamycin; redox; senescence
    DOI:  https://doi.org/10.1016/j.devcel.2024.04.020
  2. Sci Adv. 2024 Jun 21. 10(25): eadn0014
      The central nervous system coordinates peripheral cellular stress responses, including the unfolded protein response of the mitochondria (UPRMT); however, the contexts for which this regulatory capability evolved are unknown. UPRMT is up-regulated upon pathogenic infection and in metabolic flux, and the olfactory nervous system has been shown to regulate pathogen resistance and peripheral metabolic activity. Therefore, we asked whether the olfactory nervous system in Caenorhabditis elegans controls the UPRMT cell nonautonomously. We found that silencing a single inhibitory olfactory neuron pair, AWC, led to robust induction of UPRMT and reduction of oxidative phosphorylation dependent on serotonin signaling and parkin-mediated mitophagy. Further, AWC ablation confers resistance to the pathogenic bacteria Pseudomonas aeruginosa partially dependent on the UPRMT transcription factor atfs-1 and fully dependent on mitophagy machinery. These data illustrate a role for the olfactory nervous system in regulating whole-organism mitochondrial dynamics, perhaps in preparation for postprandial metabolic stress or pathogenic infection.
    DOI:  https://doi.org/10.1126/sciadv.adn0014
  3. Nat Chem Biol. 2024 Jun 18.
      Artificial control of intracellular protein dynamics with high precision provides deep insight into complicated biomolecular networks. Optogenetics and caged compound-based chemically induced dimerization (CID) systems are emerging as tools for spatiotemporally regulating intracellular protein dynamics. However, both technologies face several challenges for accurate control such as the duration of activation, deactivation rate and repetition cycles. Herein, we report a photochromic CID system that uses the photoisomerization of a ligand so that both association and dissociation are controlled by light, enabling quick, repetitive and quantitative regulation of the target protein localization upon illumination with violet and green light. We also demonstrate the usability of the photochromic CID system as a potential tool to finely manipulate intracellular protein dynamics during multicolor fluorescence imaging to study diverse cellular processes. We use this system to manipulate PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, showing that PINK1 recruitment to the mitochondria can promote Parkin recruitment to proceed with mitophagy.
    DOI:  https://doi.org/10.1038/s41589-024-01654-w
  4. Biochim Biophys Acta Mol Basis Dis. 2024 Jun 13. pii: S0925-4439(24)00295-3. [Epub ahead of print]1870(7): 167302
      Recessive mutations in the Parkin gene (PRKN) are the most common cause of young-onset inherited parkinsonism. Parkin is a multifunctional E3 ubiquitin ligase that plays a variety of roles in the cell including the degradation of proteins and the maintenance of mitochondrial homeostasis, integrity, and biogenesis. In 2001, the R275W mutation in the PRKN gene was identified in two unrelated families with a multigenerational history of postural tremor, dystonia and parkinsonism. Drosophila models of Parkin R275W showed selective and progressive degeneration of dopaminergic neuronal clusters, mitochondrial abnormalities, and prominent climbing defects. In the Prkn mouse orthologue, the amino acid R274 corresponds to human R275. Here we described an age-related motor impairment and a muscle phenotype in R274W +/+ mice. In vitro, Parkin R274W mutation correlates with abnormal myoblast differentiation, mitochondrial defects, and alteration in mitochondrial mRNA and protein levels. Our data suggest that the Parkin R274W mutation may impact mitochondrial physiology and eventually myoblast proliferation and differentiation.
    Keywords:  Atrophy; PARIS; Parkin
    DOI:  https://doi.org/10.1016/j.bbadis.2024.167302
  5. FASEB J. 2024 Jun 30. 38(12): e23723
      Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.
    Keywords:  BNIP3; HIF‐PHI; acute kidney injury; heat stroke; mitophagy
    DOI:  https://doi.org/10.1096/fj.202400047R