bims-tofagi Biomed News
on Mitophagy
Issue of 2024‒06‒30
four papers selected by
Michele Frison, University of Cambridge and Aitor Martínez Zarate, Euskal Herriko Unibertsitatea



  1. Nat Struct Mol Biol. 2024 Jun 25.
      Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
    DOI:  https://doi.org/10.1038/s41594-024-01338-y
  2. Br J Pharmacol. 2024 Jun 26.
      BACKGROUND AND PURPOSE: Mitochondrial dysfunction contributes to the pathogenesis and maintenance of chemotherapy-induced peripheral neuropathy (CIPN), a significant limitation of cancer chemotherapy. Recently, the stimulation of mitophagy, a pivotal process for mitochondrial homeostasis, has emerged as a promising treatment strategy for neurodegenerative diseases, but its therapeutic effect on CIPN has not been explored. Here, we assessed the mitophagy-inducing activity of 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (PDE701), a diphenyl ether derivative isolated from the marine sponge Dysidea sp., and investigated its therapeutic effect on a CIPN model.EXPERIMENTAL APPROACH: Mitophagy activity was determined by a previously established mitophagy assay using mitochondrial Keima (mt-Keima). Mitophagy induction was further verified by western blotting, immunofluorescence, and electron microscopy. Mitochondrial dysfunction was analysed by measuring mitochondrial superoxide levels in SH-SY5Y cells and Drosophila larvae. A thermal nociception assay was used to evaluate the therapeutic effect of PDE701 on the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae.
    KEY RESULTS: PDE701 specifically induced mitophagy but was not toxic to mitochondria. PDE701 ameliorated paclitaxel-induced mitochondrial dysfunction in both SH-SY5Y cells and Drosophila larvae. Importantly, PDE701 also significantly ameliorated paclitaxel-induced thermal hyperalgesia in Drosophila larvae. Knockdown of ATG5 or ATG7 abolished the effect of PDE701 on thermal hyperalgesia, suggesting that PDE701 exerts its therapeutic effect through mitophagy induction.
    CONCLUSION AND IMPLICATIONS: This study identified PDE701 as a novel mitophagy inducer and a potential therapeutic compound for CIPN. Our results suggest that mitophagy stimulation is a promising strategy for the treatment of CIPN and that marine organisms are a potential source of mitophagy-inducing compounds.
    Keywords:  Dysidea sp; mitochondrial dysfunction; mitophagy; paclitaxel; peripheral neuropathy
    DOI:  https://doi.org/10.1111/bph.16476
  3. Autophagy. 2024 Jun 26. 1-16
      Regressing the accelerated degradation of skeletal muscle protein is a significant goal for cancer cachexia management. Here, we show that genetic deletion of Pgam5 ameliorates skeletal muscle atrophy in various tumor-bearing mice. pgam5 ablation represses excessive myoblast mitophagy and effectively suppresses mitochondria meltdown and muscle wastage. Next, we define BNIP3 as a mitophagy receptor constitutively associating with PGAM5. bnip3 deletion restricts body weight loss and enhances the gastrocnemius mass index in the age- and tumor size-matched experiments. The NH2-terminal region of PGAM5 binds to the PEST motif-containing region of BNIP3 to dampen the ubiquitination and degradation of BNIP3 to maintain continuous mitophagy. Finally, we identify S100A9 as a pro-cachectic chemokine via activating AGER/RAGE. AGER deficiency or S100A9 inhibition restrains skeletal muscle loss by weakening the interaction between PGAM5 and BNIP3. In conclusion, the AGER-PGAM5-BNIP3 axis is a novel but common pathway in cancer-associated muscle wasting that can be targetable. Abbreviation: AGER/RAGE: advanced glycation end-product specific receptor; BA1: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; Ckm-Cre: creatinine kinase, muscle-specific Cre; CM: conditioned medium; CON/CTRL: control; CRC: colorectal cancer; FUNDC1: FUN14 domain containing 1; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; S100A9: S100 calcium binding protein A9; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TIMM23: translocase of inner mitochondrial membrane 23; TSKO: tissue-specific knockout; VDAC1: voltage dependent anion channel 1.
    Keywords:  AGER; S100A9; cachexia; cancer; mitophagy; muscle atrophy
    DOI:  https://doi.org/10.1080/15548627.2024.2360340
  4. Int J Mol Sci. 2024 Jun 11. pii: 6441. [Epub ahead of print]25(12):
      Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.
    Keywords:  Parkin; Parkinson’s disease; aging; metabolism; mitochondria; mitophagy
    DOI:  https://doi.org/10.3390/ijms25126441