bims-tofagi Biomed News
on Mitophagy
Issue of 2024–11–24
three papers selected by
Michele Frison, University of Cambridge



  1. Mol Cell. 2024 Nov 21. pii: S1097-2765(24)00880-3. [Epub ahead of print]84(22): 4261-4263
      In this issue of Molecular Cell, Longo et al.1 reveal that AMPK, a regulatory kinase activated by metabolic stress, inhibits NIX/BNIP3-dependent mitophagy to preserve mitochondrial quantity and activates PINK1/Parkin-dependent mitophagy to ensure mitochondrial quality.
    DOI:  https://doi.org/10.1016/j.molcel.2024.10.040
  2. J Cell Biol. 2024 Dec 02. pii: e202407193. [Epub ahead of print]223(12):
      Here, we report that the RTN3L-SEC24C endoplasmic reticulum autophagy (ER-phagy) receptor complex, the CUL3KLHL12 E3 ligase that ubiquitinates RTN3L, and the FIP200 autophagy initiating protein, target mutant proinsulin (Akita) condensates for lysosomal delivery at ER tubule junctions. When delivery was blocked, Akita condensates accumulated in the ER. In exploring the role of tubulation in these events, we unexpectedly found that loss of the Parkinson's disease protein, PINK1, reduced peripheral tubule junctions and blocked ER-phagy. Overexpression of the PINK1 kinase substrate, DRP1, increased junctions, reduced Akita condensate accumulation, and restored lysosomal delivery in PINK1-depleted cells. DRP1 is a dual-functioning protein that promotes ER tubulation and severs mitochondria at ER-mitochondria contact sites. DRP1-dependent ER tubulating activity was sufficient for suppression. Supporting these findings, we observed PINK1 associating with ER tubules. Our findings show that PINK1 shapes the ER to target misfolded proinsulin for RTN3L-SEC24C-mediated macro-ER-phagy at defined ER sites called peripheral junctions. These observations may have important implications for understanding Parkinson's disease.
    DOI:  https://doi.org/10.1083/jcb.202407193
  3. JCI Insight. 2024 Nov 19. pii: e180409. [Epub ahead of print]
      Bone homeostasis primarily stems from the balance between osteoblasts and osteoclasts, wherein an augmented number or heightened activity of osteoclasts is a prevalent etiological factor in the development of bone loss. Nuclear Dbf2-related kinase (NDR2), also known as STK38L, is a member of the Hippo family with serine/threonine kinase activity. We unveiled an upregulation of NDR2 expression during osteoclast differentiation. Manipulation of NDR2 levels through knockdown or overexpression facilitated or hindered osteoclast differentiation respectively, indicating a negative feedback role for NDR2 in the osteoclastogenesis. Myeloid NDR2-dificient mice (Lysm+NDR2f/f) showed lower bone mass and further exacerbated ovariectomy-induced or aging-related bone loss. Mechanically, NDR2 enhanced autophagy and mitophagy through mediating ULK1 instability. In addition, ULK1 inhibitor (ULK1-IN2) ameliorated NDR2 cKO-induced bone loss. Finally, we clarified a significant inverse association between NDR2 expression and the occurrence of osteoporosis in patients. In a word, NDR2-ULK1-mitophagy axis was a potential innovative therapeutic target for the prevention and management of bone loss.
    Keywords:  Autophagy; Bone marrow differentiation; Development; Metabolism; Osteoporosis
    DOI:  https://doi.org/10.1172/jci.insight.180409