bims-tofagi Biomed News
on Mitophagy
Issue of 2026–02–15
five papers selected by
Michele Frison, University of Cambridge



  1. Autophagy. 2026 Feb 12. 1-3
      Mitochondria regulate ATP production, calcium buffering, and apoptotic signaling, and clearing dysfunctional mitochondria by mitophagy is essential for cellular homeostasis. While PINK1-dependent mitophagy is well-characterized in neurons, its function in glial cells such as astrocytes is less understood. Our study demonstrates that PINK1-mitophagy in astrocytes occurs faster and with less spatial restriction compared to neurons. This pathway was specifically regulated in astrocytes by the glycolytic enzyme, HK2 (hexokinase 2), which forms a glucose-dependent complex with PINK1 following mitochondrial damage. Inflammation also induces HK2-PINK1 mitophagy, and its activation in astrocytes protects against cytokine-induced neuronal death. Our findings characterize a novel HK2-PINK1 pathway in astrocytes that bridges mitophagy, metabolism, and immune signaling.Abbreviation: HK2: hexokinase 2; PD: Parkinson disease; PINK1: PTEN induced kinase 1; S65: serine 65.
    Keywords:  Astrocyte; HK1; PINK1; mitochondria; mitophagy; neurodegeneration; parkin
    DOI:  https://doi.org/10.1080/15548627.2026.2623987
  2. Aging Cell. 2026 Feb;25(2): e70402
      Mitochondrial quality control is tightly associated with aging-related neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Previous studies reported that ALS/FTD-associated protein p62 drives "mitochondrial clustering" (perinuclear clustering of fragmented and swollen mitochondria) during PINK1/Parkin-mediated mitophagy, but the underlying molecular mechanism, especially the precise role of p62 in mitochondrial clustering during mitophagy and the potential relationship between the mitochondrial quality control mediated by p62 and disease pathogenesis of ALS/FTD, remains unclear. Here, using cell biology in combination with an optogenetic tool, we show that the phase separation (condensation) of p62 mediates the clustering of damaged mitochondria to form "grape-like" clusters during PINK1/Parkin-mediated mitophagy, which is tightly associated with aging-related neurodegenerative diseases. In addition, our data suggest this mitochondrial clustering process is an arrest mechanism driven by p62 condensation (beyond the function of other autophagy receptors in mitophagy), which acts as a "brake" to reduce the surface area of dysfunctional mitochondria within cytoplasm for minimizing mitochondrial turnover in cells. Moreover, ALS/FTD-related pathological mutations perturb p62 condensation, thereby inhibiting mitochondrial clustering and destroying the "brake" machinery of mitochondrial quality control. Together, our data highlight how p62 condensation modulates organelle quality control in cell biology, and the important role of p62 condensation in both physiology and pathology.
    DOI:  https://doi.org/10.1111/acel.70402
  3. Cell Death Differ. 2026 Feb 13.
      Methionine-1 (M1)-linked ubiquitin chains, assembled by the linear ubiquitin chain assembly complex (LUBAC) and disassembled by the deubiquitinase OTULIN, are critical regulators of inflammation and immune homoeostasis. Genetic loss or mutation of the LUBAC subunits HOIP and HOIL-1 or of OTULIN causes autoinflammatory syndromes accompanied by metabolic defects, including amylopectinosis, lipodystrophy, and fatty liver disease. Yet, it remains unclear how LUBAC and OTULIN control metabolic signalling. Here, we demonstrate that LUBAC and OTULIN dynamically regulate the energy-sensing kinase AMPK, a central sensor and switch for cellular and organismal energy balance. LUBAC's activity through the catalytic subunit HOIP is required for full AMPK activation in response to energetic stress, whereas OTULIN antagonises this response. LUBAC and OTULIN form a complex with AMPK, and LUBAC can directly ubiquitinate AMPKα and β subunits in cells and in vitro, establishing AMPK as a bona fide M1-linked ubiquitin substrate. Loss of LUBAC blunts AMPK activation, reduces bioenergetic adaptability, impairs autophagy, and sensitises cells to starvation-induced death, while Drosophila lacking Lubel - the fly orthologue of LUBAC - exhibit defective AMPK activation and reduced survival during starvation. Our findings identify M1-linked ubiquitination as a previously unrecognised regulatory layer controlling AMPK activation, metabolic adaptability, and the cellular response to energetic stress.
    DOI:  https://doi.org/10.1038/s41418-026-01675-z
  4. Cell Death Dis. 2026 Feb 14.
      The mitochondria-localized deubiquitinase USP30 regulates mitophagy and mitochondrial homeostasis, playing a significant role in the progression of neurodegenerative diseases. However, its role in cancer remains poorly understood. Through metabolism-related gene set enrichment analysis, we identified USP30 as a key modulator of glucose metabolism in cancer cells. Utilizing quantitative proteomic and ubiquitinomic approaches coupled with co-immunoprecipitation assays, we elucidated that USP30 regulates glycolysis by interacting with hexokinase HK1 and HK2, a process dependent on its enzymatic activity. USP30 modulates the ubiquitination profile of HK1 and HK2 by preferentially removing atypical ubiquitin chains, thereby enhancing their stability, mitochondrial localization, VDAC1 binding and hexokinase activity. Lysine 144 emerges as a critical regulatory site for USP30-mediated deubiquitination of HK2. Mutation of K144 enhances HK2 stability, increases its mitochondrial localization and binding to VDAC1, and significantly augments hexokinase activity. Furthermore, the HK2 K144 mutation markedly enhances tumor cell glycolysis, fostering increased proliferation and migration both in vitro and in vivo. These findings underscore USP30 as a novel regulator of glycolysis in cancer cells via modulation of HK2 ubiquitination dynamics, suggesting its potential as a therapeutic target in cancer metabolism.
    DOI:  https://doi.org/10.1038/s41419-026-08459-w
  5. Protein Sci. 2026 Mar;35(3): e70491
      Most mitochondrial proteins are synthesized in the cytosol as precursor proteins with N-terminal presequences. These presequences serve as targeting signals that facilitate the binding to mitochondrial surface receptors and translocation across the mitochondrial membranes. However, recent studies showed that presequences can be more than address tags. They can contain degradation signals recognized by components of the ubiquitin-proteasome system, and therefore, serve as timers that determine the lifespan of newly synthesized precursor proteins. Moreover, presequences can interact with components of the cytosolic chaperone system to prevent or delay precursor folding. Finally, presequences of some dually localized proteins contain targeting information not only for mitochondria but also for other cellular destinations such as the nuclear lumen or chloroplasts in plant cells. Thus, presequences contain multifaceted information to endow mitochondrial precursor proteins with specific properties that are critical for the early steps of mitochondrial protein biogenesis.
    Keywords:  Presequence; chaperones; mitochondria; proteasome; protein import; ubiquitin ligases
    DOI:  https://doi.org/10.1002/pro.70491