bims-toxgon Biomed News
on Toxoplasma gondii metabolism
Issue of 2023‒12‒03
twelve papers selected by
Lakesh Kumar, BITS Pilani



  1. Microbiol Spectr. 2023 Dec 01. e0286623
      IMPORTANCE: Toxoplasma gondii, an obligate intracellular eukaryotic parasite, can infect about one-third of the world's population. One vaccine, Toxovax, has been developed and licensed commercially; however, it is only used in the sheep industry to reduce the losses caused by congenital toxoplasmosis. Various other vaccine approaches have been explored, including excretory secretion antigen vaccines, subunit vaccines, epitope vaccines, and DNA vaccines. However, current research has not yet developed a safe and effective vaccine for T. gondii. Here, we generated an mRNA vaccine candidate against T. gondii. We investigated the efficacy of vaccination with a novel identified candidate, TGGT1_278620, in a mouse infection model. We screened T. gondii-derived protective antigens at the genome-wide level, combined them with mRNA-lipid nanoparticle vaccine technology against T. gondii, and investigated immune-related factors and mechanisms. Our findings might contribute to developing vaccines for immunizing humans and animals against T. gondii.
    Keywords:  Toxoplasma gondii; immune response; lipid nanoparticle; mRNA; vaccine
    DOI:  https://doi.org/10.1128/spectrum.02866-23
  2. bioRxiv. 2023 Nov 15. pii: 2023.11.15.567216. [Epub ahead of print]
      Toxoplasma gondii , a medically important intracellular parasite, uses GRA proteins, secreted from dense granule organelles, to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17 . Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant 'bubble vacuole' morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δ gra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections.IMPORTANCE: Toxoplasma gondii is a parasite that poses significant health risks to those with impaired immunity. It replicates inside host cells shielded by the parasitophorous vacuole membrane (PVM), which controls nutrient and waste exchange with the host. GRA72, previously identified as essential in the absence of the GRA17 nutrient channel, is implicated in forming an alternative nutrient channel. Here we found that GRA47 associates with GRA72 and is also important for the PVM's permeability to small molecules. Removal of GRA47 leads to distorted vacuoles and impairs small molecule transport across the PVM, resembling the effects of GRA17 and GRA72 deletions. Structural models suggest GRA47 and GRA72 form distinct pore structures, with a pore-lining histidine critical to their function. Toxoplasma strains lacking GRA47, or those with a histidine mutation, have impaired growth and reduced virulence in mice, highlighting these proteins as potential targets for new treatments against Toxoplasmosis.
    DOI:  https://doi.org/10.1101/2023.11.15.567216
  3. bioRxiv. 2023 Nov 16. pii: 2023.11.16.567449. [Epub ahead of print]
      Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma . The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that TgCPDH potentially functions as an alternative enzyme to perform the same reaction as CPOX under low oxygen conditions. In this study, we demonstrated that TgCPDH exhibits coproporphyrinogen dehydrogenase activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wildtype and heme-deficient parasites did not alter their intracellular growth under both ambient and low oxygen conditions. This research marks the first report of a coproporphyrinogen dehydrogenase-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings suggest that it does not directly affect intracellular infection or the pathogenesis of Toxoplasma parasites.IMPORTANCE: Toxoplasma gondii is a ubiquitous parasite capable of infecting a wide range of warm-blooded hosts, including humans. During its lifecycle, these parasites must adapt to varying environmental conditions, including situations with low oxygen levels. Our research, in conjunction with studies conducted by other laboratories, has revealed that Toxoplasma primarily relies on its own heme production during acute infections. Intriguingly, in addition to this classical heme biosynthetic pathway, the parasites encode a putative oxygen-independent coproporphyrinogen dehydrogenase, suggesting its potential contribution to heme production under varying oxygen conditions, a feature typically observed in simpler organisms like bacteria. Notably, so far, coproporphyrinogen dehydrogenase has only been identified in some bacteria for heme biosynthesis. Our study discovered that Toxoplasma harbors a functional enzyme displaying coproporphyrinogen dehydrogenase activity, which alters its expression in the parasites when they face fluctuating oxygen levels in their surroundings.
    DOI:  https://doi.org/10.1101/2023.11.16.567449
  4. Heliyon. 2023 Nov;9(11): e22147
      It is estimated that 30 % of the world's population harbours the parasite Toxoplasma gondii, particularly in the brain. Beyond its implication in potentially severe opportunistic or congenital infections, this persistence has long been considered as without consequence. However, certain data in animals and humans suggest that this carriage may be linked to various neuropsychiatric or neurodegenerative disorders. The hypothesis of a potential cerebral oncogenicity of the parasite is also emerging. In this personal view, we will present the epidemiological arguments in favour of an association between toxoplasmosis and cerebral malignancy, before considering the points that could underlie a potential causal link. More specifically, we will focus on the brain as the preferred location for T. gondii persistence and the propensity of this parasite to interfere with the apoptosis and cell cycle signalling pathways of their host cell.
    Keywords:  Apoptosis; Brain; Cancer; Cell cycle; Toxoplasma
    DOI:  https://doi.org/10.1016/j.heliyon.2023.e22147
  5. Front Cell Infect Microbiol. 2023 ;13 1236130
      Background: Toxoplasma gondii can cause congenital infection and abortion in humans and warm-blooded animals. T. gondii dense granule proteins, GRA35, GRA42, and GRA43, play a critical role in the establishment of chronic infection. However, their potential to induce protective immunity against T. gondii infection remains unexplored.Objective: This study aimed to test the efficacy of a DNA vaccine encompassing GRA35, GRA42, and GRA43 in inducing protective immunity against the highly virulent T. gondii RH strain (type I) and the brain cyst-forming PRU strain (type II).
    Methods: The eukaryotic plasmids pVAX-GRA35, pVAX-GRA42, and pVAX-GRA43 were constructed and formulated into two- or three-gene cocktail DNA vaccines. The indirect immunofluorescence assay (IFA) was used to analyze their expression and immunogenicity. Mice were immunized with a single-gene, two-genes, or multicomponent eukaryotic plasmid, intramuscularly. We assessed antibody levels, cytotoxic T-cell (CTL) responses, cytokines, and lymphocyte surface markers by using flow cytometry. Additionally, mouse survival and cyst numbers in the brain of mice challenged 1 to 2 months postvaccination were determined.
    Results: Specific humoral and cellular immune responses were elicited in mice immunized with single-, two-, or three-gene cocktail DNA vaccine, as indicated by significant increases in serum antibody concentrations of total IgG, IgG2a/IgG1 ratio, cytokine levels (IFN-γ, IL-2, IL-12, IL-4, and IL-10), lymphocyte proliferation, lymphocyte populations (CD4+ and CD8+ T lymphocytes), CTL activities, and survival, as well as decreased brain cysts, in comparison with control mice. Moreover, compared with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43, multicomponent DNA vaccine with three genes (pVAX-GRA35 + pVAX-GRA42 + pVAX-GRA43) induced the higher humoral and cellular immune responses, including serum antibody concentrations, cytokine levels, lymphocyte proliferation, lymphocyte populations, CTL activities and survival, resulting in prolonged survival time and reduced brain cyst loads. Furthermore, mice immunized with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43 showed greater Th1 immune responses and protective efficacy than the single-gene-vaccinated groups.
    Conclusion: These results demonstrate that TgGRA35, TgGRA42, or TgGRA43 are vaccine candidates against T. gondii infection, and the three-gene DNA vaccine cocktail conferred the strongest protection against T. gondii infection.
    Keywords:  DNA vaccine; GRA35; GRA42; GRA43; Kunming mice; Toxoplasma gondii; protective immunity
    DOI:  https://doi.org/10.3389/fcimb.2023.1236130
  6. Food Waterborne Parasitol. 2023 Dec;33 e00212
      The protozoan parasites Cryptosporidium parvum, Cyclospora cayetanensis, and Toxoplasma gondii are major causes of waterborne and foodborne diseases worldwide. The assessment of their removal or inactivation during water treatment and food processing remains challenging, partly because research on these parasites is hindered by various economical, ethical, methodological, and biological constraints. To address public health concerns and gain new knowledge, researchers are increasingly seeking alternatives to the use of such pathogenic parasites. Over the past few decades, several non-pathogenic microorganisms and manufactured microparticles have been evaluated as potential surrogates of waterborne and foodborne protozoan parasites. Here, we review the surrogates that have been reported for C. parvum, C. cayetanensis, and T. gondii oocysts, and discuss their use and relevance to assess the transport, removal, and inactivation of these parasites in food and water matrices. Biological surrogates including non-human pathogenic Eimeria parasites, microorganisms found in water sources (anaerobic and aerobic spore-forming bacteria, algae), and non-biological surrogates (i.e. manufactured microparticles) have been identified. We emphasize that such surrogates have to be carefully selected and implemented depending on the parasite and the targeted application. Eimeria oocysts appear as promising surrogates to investigate in the future the pathogenic coccidian parasites C. cayetanensis and T. gondii that are the most challenging to work with.
    Keywords:  Cryptosporidium parvum; Cyclospora cayetanensis; Oocyst; Protozoa; Surrogate; Toxoplasma gondii
    DOI:  https://doi.org/10.1016/j.fawpar.2023.e00212
  7. Anal Biochem. 2023 Nov 26. pii: S0003-2697(23)00370-6. [Epub ahead of print]685 115405
      Acetyl-Coenzyme A is a central metabolite in catabolic and anabolic pathways as well as the acyl donor for acetylation reactions. Multiple quantitative measurement techniques for acetyl-CoA have been reported, including commercially available kits. Comparisons between techniques for acetyl-CoA measurement have not been reported. This lack of comparability between assays makes context-specific assay selection and interpretation of results reporting changes in acetyl-CoA metabolism difficult. We compared commercially available colorimetric ELISA and fluorometric enzymatic-based kits to liquid chromatography-mass spectrometry-based assays using tandem mass spectrometry (LC-MS/MS) and high-resolution mass spectrometry (LC-HRMS). The colorimetric ELISA kit did not produce interpretable results even with commercially available pure standards. The fluorometric enzymatic kit produced comparable results to the LC-MS-based assays depending on matrix and extraction. LC-MS/MS and LC-HRMS assays produced well-aligned results, especially when incorporating stable isotope-labeled internal standards. In addition, we demonstrated the multiplexing capability of the LC-HRMS assay by measuring a suite of short-chain acyl-CoAs in a variety of acute myeloid leukemia cell lines and patient cells.
    Keywords:  Acetyl-CoA; Mass spectrometry; Metabolite; Method comparison
    DOI:  https://doi.org/10.1016/j.ab.2023.115405
  8. Eur J Clin Invest. 2023 Dec 01. e14138
      Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
    Keywords:  AMPK; NAD; acetyl-CoA; ageing; ageing-related disease; metabolism; mitophagy; spermidine
    DOI:  https://doi.org/10.1111/eci.14138
  9. Int J Biol Macromol. 2023 Nov 27. pii: S0141-8130(23)05168-1. [Epub ahead of print]256(Pt 2): 128269
      Histone acetylation, a crucial epigenetic mechanism, has been suggested to play a role in diapause regulation, but this has not been confirmed through gene loss-of-function studies. In this work, we investigated the involvement of MYST family genes, which are key writers of histone acetylation, in initiating reproductive diapause using the cabbage beetle Colaphellus bowringi as a model. We identified C. bowringi orthologs of MYST, including Tip60, KAT6A, KAT7, and KAT8, from previous transcriptomes. Analyses of phylogenetic trees and protein domains indicated that these MYST proteins are structurally conserved across animal species. Expression of these MYST genes was found to be enriched in heads and ovaries of C. bowringi. Under reproductive photoperiod conditions, RNAi targeting MYST genes, especially KAT8, suppressed ovarian growth and yolk deposition, resembling the characteristics of diapausing ovaries. Additionally, KAT8 knockdown led to the upregulation of diapause-related genes, such as heat shock proteins and diapause protein 1, and the emergence of diapause-like guts. Moreover, KAT8 knockdown reduced the expression of a crucial enzyme involved in juvenile hormone (JH) biosynthesis, likely due to decreased H4K16ac levels. Consequently, our findings suggest that MYST family genes, specifically KAT8, influence the JH signal, thereby regulating the initiation of reproductive diapause.
    Keywords:  Juvenile hormone; MYST acetyltransferase; Reproductive diapause
    DOI:  https://doi.org/10.1016/j.ijbiomac.2023.128269
  10. Heliyon. 2023 Nov;9(11): e21890
      Myocardial infarction (MI) is one of the complex phenotypes of coronary artery disease, which results from the interaction of multiple genetic and environmental factors. Nicotinamide Adenine Dinucleotide (NAD+) is an important cofactor regulating metabolic homeostasis and a rate-limiting substrate for sirtuin (SIRT) deacetylase. Numerous NAD+ studies have shown that it can be used as an anti-MI treatment. However, there have been few systematic reviews of the overall role of NAD+ in treating MI. MI, which has long been a global health problem, still lacks effective treatment till now, and the discovery of NAD+ provides a new perspective on its adjuvant treatment. This review summarizes the role of NAD+ signaling in SIRTs in alleviating MI.
    Keywords:  Myocardial infarction; NAD+; Sirtuins family
    DOI:  https://doi.org/10.1016/j.heliyon.2023.e21890
  11. Front Med (Lausanne). 2023 ;10 1282820
      Introduction: Epigenetic enzymes can interact with a wide range of genes that actively participate in the progression or repression of a diseased condition, as they are involved in maintaining cellular homeostasis. Sirtuins are a family of Class III epigenetic modifying enzymes that regulate cellular processes by removing acetyl groups from proteins. They rely on NAD+ as a coenzyme in contrast to classical histone deacetylases (HDACs) (Class I, II, and IV) that depend on Zn+ for their activation, linking their function to cellular energy levels. There are seven mammalian sirtuin isoforms (Sirt1-7), each located in different subcellular compartments. Sirtuins have emerged as a promising target, given that inhibitors of natural and synthetic sources are highly warranted. Imidazole derivatives are often investigated as sirtuin regulators due to their ability to interact with the binding site and modulate their activity. Imidazole bestows many possible substitutions on its ring and neighboring atoms to design and synthesize derivatives with specific target selectivity and improved pharmacokinetic properties, optimizing drug development.Materials and methods: Ligand preparation, protein preparation, molecular docking, molecular dynamics, density function theory (DFT) analysis, and absorption, distribution, metabolism, and excretion (ADME) analysis were performed to understand the interacting potential and effective stability of the ligand with the protein. RT-PCR and Western blot analyses were performed to understand the impact of ligands on the gene and protein expression of Class III HDAC enzymes.
    Results and discussion: We evaluated the sirtuin inhibition activity of our in-house compound comprised of imidazole derivatives by docking the molecules with the protein data bank. ADME properties of all the compounds used in the study were evaluated, and it was found that all fall within the favorable range of being a potential drug. The molecule with the highest docking score was analyzed using DFT, and the specific compound was used to treat the non-small cell lung cancer (NSCLC) cell lines A549 and NCI-H460. The gene and protein expression data support the in-silico finding that the compound Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl) acetate has an inhibitory effect on nuclear sirtuins. In conclusion, targeting sirtuins is an emerging strategy to combat carcinogenesis. In this study, we establish that Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl) acetate possesses a strong inhibitory effect on nuclear sirtuins in NSCLC cell lines.
    Keywords:  HDAC; epigenetics; imidazole; inhibitors; sirtuins
    DOI:  https://doi.org/10.3389/fmed.2023.1282820
  12. FASEB J. 2023 Dec;37(12): e23319
      Glutamine synthetase (GS) is a crucial enzyme involved in de novo synthesis of glutamine and participates in several biological processes, including nitrogen metabolism, nucleotide synthesis, and amino acid synthesis. Post-translational modification makes GS more adaptable to the needs of cells, and acetylation modification of GS at double sites has attracted considerable attention. Despite very intensive research, how SUMOylation affects GS activity at a molecular level remains unclear. Here, we report that previously undiscovered GS SUMOylation which is deficient mutant K372R of GS exhibits more bluntness under glutamine starvation. Mechanistically, glutamine deprivation triggers the GS SUMOylation, and this SUMOylation impaired the protein stability of GS, within a concomitant decrease in enzymatic activity. In addition, we identified SAE1, Ubc9, and PIAS1 as the assembly enzymes of GS SUMOylation respectively. Furthermore, Senp1/2 functions as a SUMO-specific protease to reverse the SUMOylation of GS. This study provides the first evidence that SUMOylation serves as a regulatory mechanism for determining the GS enzymatic activity, contributing to understanding the GS regulation roles in various cellular and pathophysiological processes.
    DOI:  https://doi.org/10.1096/fj.202301462RR