bims-traimu Biomed News
on Trained immunity
Issue of 2023–10–29
six papers selected by
Yantong Wan, Southern Medical University



  1. Front Immunol. 2023 ;14 1252554
      The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
    Keywords:  innate immune memory; metabolic and epigenetic programming; parasitic diseases; trained immunity; vaccine
    DOI:  https://doi.org/10.3389/fimmu.2023.1252554
  2. Front Allergy. 2023 ;4 1299113
      
    Keywords:  food allergy; microbiome; mouse models; neuroimmune axis; tolerance; trained immunity
    DOI:  https://doi.org/10.3389/falgy.2023.1299113
  3. Pediatr Allergy Immunol. 2023 Oct;34(10): e14038
      Asthma represents a chronic respiratory disease affecting millions of children worldwide. The transition from preschool wheezing to school-age asthma involves a multifaceted interplay of various factors, including immunological aspects in early childhood. These factors include complex cellular interactions among different immune cell subsets, induction of pro-inflammatory mediators and the molecular impact of environmental factors like allergens or viral infections on the developing immune system. Furthermore, the activation of specific genes and signalling pathways during this early phase plays a pivotal role in the manifestation of symptoms and subsequent development of asthma. Early identification of the propensity or risk for asthma development, for example by allergen sensitisation and viral infections during this critical period, is crucial for understanding the transition from wheeze to asthma. Favourable immune regulation during a critical 'window of opportunity' in early childhood can induce persistent changes in immune cell behaviour. In this context, trained immunity, including memory function of innate immune cells, has significant implications for understanding immune responses, potentially shaping long-term immunological outcomes based on early-life environmental exposures. Exploration of these underlying immune mechanisms that drive disease progression will provide valuable insights to understand childhood asthma development. This will be instrumental to develop preventive strategies at different stages of disease development for (i) inhibiting progression from wheeze to asthma or (ii) reducing disease severity and (iii) uncovering novel therapeutic strategies and contributing to more tailored and effective treatments for childhood asthma. In the long term, this shall empower healthcare professionals to develop evidence-based interventions that reduce the burden of asthma for children, families and society overall.
    Keywords:  asthma; immunology; innate immune cells; polysensitisation; progression; viral infections; wheeze
    DOI:  https://doi.org/10.1111/pai.14038
  4. Front Vet Sci. 2023 ;10 1278329
      Bovine tuberculosis (bTB) is a chronic disease mainly caused by Mycobacterium bovis, a zoonotic pathogen with economic significance as it leads to reduced milk and meat production, and high costs for control measures. The Bacillus Calmette-Guérin (BCG) vaccine, primarily used to prevent tuberculosis in humans, has also been studied for controlling bTB. While showing effectiveness in preventing M. bovis infection and disease in cattle, the BCG vaccine can induce non-specific effects on the immune system, enhancing responses to infections caused by unrelated pathogens, and also having non-specific effects on lactation. The aim of this study is to describe both the specific and non-specific effects of BCG vaccination in calves from a commercial dairy herd in central Chile. Diagnosis of M. bovis infection was performed through the IFNγ release assay (IGRA) using ESAT6/CFP-10 and Rv3615c antigens. The records of milk production, somatic cell count (SCC), clinical mastitis (CM) and retained placenta (RP) during the first lactation were compared between vaccinated and non-vaccinated animals. The breed (Holstein Friesian [HF] v/s HF × Swedish Red crossbred [HFSR]) and the season (warm v/s cold) were also analyzed as categorical explanatory variables. Results of IGRA showed significant differences between vaccinated and control groups, indicating a vaccine efficacy of 58.5% at 18 months post vaccination in HFSR crossbred animals. Although milk production did not vary, SCC and CM showed differences between groups, associated to the breed and the season, respectively. When analyzing CM and RP as a whole entity of disease, BCG showed protection in all but the cold season variables. Overall, the BCG vaccine induced protective specific and non-specific effects on health parameters, which may be influenced by the breed of animals and the season. These results provide new features of BCG protection, supporting initiatives for its implementation as a complementary tool in bTB control.
    Keywords:  BCG; bovine tuberculosis; cattle; non-specific; protection
    DOI:  https://doi.org/10.3389/fvets.2023.1278329
  5. Nat Commun. 2023 Oct 23. 14(1): 6718
      Dimerization of C-type lectin receptors (CLRs) or Toll-like receptors (TLRs) can alter their ligand binding ability, thereby modulating immune responses. However, the possibilities and roles of dimerization between CLRs and TLRs remain unclear. Here we show that C-type lectin receptor-2d (CLEC2D) forms homodimers, as well as heterodimers with TLR2. Quantitative ligand binding assays reveal that both CLEC2D homodimers and CLEC2D/TLR2 heterodimers have a higher binding ability to fungi-derived β-glucans than TLR2 homodimers. Moreover, homo- or hetero-dimeric CLEC2D mediates β-glucan-induced ubiquitination and degradation of MyD88 to inhibit the activation of transcription factor IRF5 and subsequent IL-12 production. Clec2d-deficient female mice are resistant to infection with Candida albicans, a human fungal pathogen, owing to the increase of IL-12 production and subsequent generation of IFN-γ-producing NK cells. Together, these data indicate that CLEC2D forms homodimers or heterodimers with TLR2, which negatively regulate antifungal immunity through suppression of IRF5-mediated IL-12 production. These homo- and hetero-dimers of CLEC2D and TLR2 provide an example of receptor dimerization to regulate host innate immunity against microbial infections.
    DOI:  https://doi.org/10.1038/s41467-023-42216-3