bims-traimu Biomed News
on Trained immunity
Issue of 2025–04–13
ten papers selected by
Yantong Wan, Southern Medical University



  1. Front Immunol. 2025 ;16 1483764
      Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic disease of which the underlying (molecular) mechanisms are mostly unknown. An estimated 0.89% of the global population is affected by ME/CFS. Most patients experience a multitude of symptoms that severely affect their lives. These symptoms include post-exertional malaise, chronic fatigue, sleep disorder, impaired cognitive functions, flu-like symptoms, and chronic immune activation. Therapy focusses on symptom management, as there are no drugs available. Approximately 60% of patients develop ME/CFS following an acute infection. Such a preceding infection may induce a state of trained immunity; defined as acquired, nonspecific, immunological memory of innate immune cells. Trained immune cells undergo long term epigenetic reprogramming, which leads to changes in chromatin accessibility, metabolism, and results in a hyperresponsive phenotype. Initially, trained immunity has only been demonstrated in peripheral blood monocytes and macrophages. However, more recent findings indicate that hematopoietic stem cells in the bone marrow are required for long-term persistence of trained immunity. While trained immunity is beneficial to combat infections, a disproportionate response may cause disease. We hypothesize that pronounced hyperresponsiveness of innate immune cells to stimuli could account for the aberrant activation of various immune pathways, thereby contributing to the pathophysiology of ME/CFS. In this mini review, we elaborate on the concept of trained immunity as a factor involved in the pathogenesis of ME/CFS by presenting evidence from other post-infectious diseases with symptoms that closely resemble those of ME/CFS.
    Keywords:  ME/CFS; PASC; epigenetics; innate immunity; metabolomics; trained immunity
    DOI:  https://doi.org/10.3389/fimmu.2025.1483764
  2. Cell Oncol (Dordr). 2025 Apr 09.
       BACKGROUND: Patients who survive the excessive inflammatory phase of sepsis experience prolonged immunoparalysis/immunosuppression. During this phase, the patient's immune system is severely impaired, which increases the patient's susceptibility to septic complications. Sepsis survivors have a significantly greater incidence of cancer, but the mechanism underlying this phenomenon is unknown.
    METHODS: We constructed two sepsis-melanoma models to assess the relationship between sepsis and sepsis-related concomitant cancer. In our investigation, we employed a range of experimental technique to elucidate the intricate mechanisms through which the immunoparalysis phase of sepsis facilitates melanoma progression. Furthermore, we induced trained immunity with oroxylin A (OA) to evaluate its ability to reverse immunoparalysis and subsequent tumor progression in sepsis-melanoma models.
    RESULTS: We showed that sepsis upregulated the serum level of interleukin (IL)-6 and the number of myeloid-derived suppressor cells (MDSCs), regulated G-MDSCs/M-MDSCs and inhibited CD8+T-cell function, which promoted melanoma progression. OA-induced trained immunity can reverse immunoparalysis, maintain the antitumor capacity of the immune system, and inhibit the development of sepsis-complicated melanoma. Notably, OA can target macrophage migration inhibitory factor (MIF) and downregulate the serum level of IL-6, which may be a crucial molecular mechanism by which OA induces trained immunity to reverse the immunoparalysis phase of sepsis.
    CONCLUSION: Sepsis can promote cancer progression by upregulating MIF and IL-6, increasing the G-MDSCs/M-MDSCs ratio and reducing the number and function of CD8+ T cells, leading to immunoparalysis, while trained immunity can alleviate this progression. The findings of this study provide new strategies for preventing or treating sepsis-complicated cancer.
    Keywords:  Immunoparalysis; Melanoma; Oroxylin A; Sepsis; Trained immunity
    DOI:  https://doi.org/10.1007/s13402-025-01063-8
  3. Vaccine. 2025 Apr 05. pii: S0264-410X(25)00373-1. [Epub ahead of print]53 127076
      Trained immunity is defined as an enhanced state of the innate system which leads to an improved immune response against related or non-related pathogens. Bacillus Calmette-Guérin (BCG) vaccine, a live attenuated Mycobacterium bovis strain, is currently one of the main inductors of trained immunity. The objective of the present study was to evaluate the protective effects of heat-inactivated M. bovis (HIMB) against Plasmodium berghei and Borrelia burgdorferi and characterize the immunological mechanisms involved. BALB/c and C3H/HeN mice were randomly assigned in similar number to either immunized group receiving two oral doses of HIMB with a 4-week interval, or control group treated with PBS. All the BALB/c mice were intraperitoneally infected with P. berghei while the C3H/HeN mice were subcutaneously infected with B. burgdorferi. Pathogen burden was significantly reduced in both immunized groups when compared to controls. The number of macrophages significantly decreased in the liver or in the spleen of the mice that had been immunized prior to the challenge with P. berghei or B. burgdorferi, respectively. Furthermore, the immunized groups showed an apparent upregulation of IFN-γ, TNF-α and IL-1α in the liver (P. berghei challenge) or a significant increase in IL-1α producing cells in the spleen (B. burgdorferi challenge). Our findings suggest that oral immunization with heat-inactivated mycobacteria limits pathogen burden through stimulation of the innate immune response in two vector-borne diseases in mice.
    Keywords:  Borrelia burgdorferi; Mycobacterium bovis; Plasmodium berghei; Trained immunity; Vector-borne disease
    DOI:  https://doi.org/10.1016/j.vaccine.2025.127076
  4. Nat Commun. 2025 Apr 04. 16(1): 3230
      Trained immunity refers to the long-term memory of the innate immune cells. However, little is known about how environmental nutrient availability influences trained immunity. This study finds that physiologic carbon sources impact glucose contribution to the tricarboxylic acid (TCA) cycle and enhance cytokine production of trained monocytes. Our experiments demonstrate that trained monocytes preferentially employe lactate over glucose as a TCA cycle substrate, and lactate metabolism is required for trained immune cell responses to bacterial and fungal infection. Except for the contribution to the TCA cycle, endogenous lactate or exogenous lactate also supports trained immunity by regulating histone lactylation. Further transcriptome analysis, ATAC-seq, and CUT&Tag-seq demonstrate that lactate enhance chromatin accessibility in a manner dependent histone lactylation. Inhibiting lactate-dependent metabolism by silencing lactate dehydrogenase A (LDHA) impairs both lactate fueled the TCA cycle and histone lactylation. These findings suggest that lactate is the hub of immunometabolic and epigenetic programs in trained immunity.
    DOI:  https://doi.org/10.1038/s41467-025-58563-2
  5. Nat Struct Mol Biol. 2025 Apr 04.
      Interferon-γ (IFNγ) transiently activates genes related to inflammation and innate immunity. A subset of targets retain a mitotically heritable memory of prior IFNγ exposure, resulting in hyperactivation upon re-exposure through poorly understood mechanisms. Here, we discover that the transcriptionally permissive chromatin marks H3K4me1, H3K14ac and H4K16ac are established during IFNγ priming and are selectively maintained on a cluster of guanylate-binding protein (GBP) genes in dividing human cells in the absence of transcription. The histone acetyltransferase KAT7 is required for H3K14ac deposition at GBP genes and for accelerated GBP reactivation upon re-exposure to IFNγ. In naive cells, the GBP cluster is maintained in a low-level repressive chromatin state, marked by H3K27me3, limiting priming through a PRC2-dependent mechanism. Unexpectedly, IFNγ priming results in transient accumulation of this repressive mark despite active gene expression. However, during the memory phase, H3K27 methylation is selectively depleted from primed GBP genes, facilitating hyperactivation. Furthermore, we identified a cis-regulatory element that forms transient, long-range contacts across the GBP cluster and acts as a repressor, curbing hyperactivation of previously IFNγ-primed cells. Our results provide insight into the chromatin basis for the long-term transcriptional memory of IFNγ signaling, which might contribute to enhanced innate immunity.
    DOI:  https://doi.org/10.1038/s41594-025-01522-8
  6. Sci Transl Med. 2025 Apr 09. 17(793): eadr4458
      The tumor microenvironment predominantly polarizes tumor-associated macrophages (TAMs) toward an M2-like phenotype, thereby inhibiting antitumor immune responses. This process is substantially affected by metabolic reprogramming; however, reeducating TAMs to enhance their antitumor capabilities through metabolic remodeling remains a challenge. Here, we show that tumor-derived microparticles loaded with succinate (SMPs) can remodel the metabolic state of TAMs. SMPs promote classical M1-like polarization of macrophages by enhancing glycolysis and attenuating the tricarboxylic acid (TCA) cycle in a protein succinylation-dependent manner. Mechanistically, succinate is delivered into the mitochondria and nucleus by SMPs, leading to succinylation of isocitrate dehydrogenase 2 (IDH2) and histone H3K122 within the lactate dehydrogenase A (Ldha) promoter region. Our findings provide a distinct approach for TAM polarization using cell membrane-derived microparticles loaded with endogenous metabolites, a platform that may be used more broadly for posttranslational modification-based tumor immunotherapy.
    DOI:  https://doi.org/10.1126/scitranslmed.adr4458
  7. Mol Med. 2025 Apr 09. 31(1): 133
      Low-density neutrophils (LDNs) are a unique subpopulation of neutrophils, play a significant role in regulating innate and adaptive immunity in various inflammation-related diseases. Emerging evidence suggests that LDNs play a significant role in the pathogenesis and progression of various diseases, including infections, autoimmune disorders, and cancer. In this review, we address the origin, development, and heterogeneity of LDNs, and the roles of LDNs in system homeostasis and diseases. We will focus on the findings of the interaction between LDNs and other immune cells. We will then discuss potential novel therapeutic strategies of intervention in diseases by targeting LDNs.
    Keywords:  B cells; Inflammation; Low-density neutrophils; Macrophages; Platelets; T cells
    DOI:  https://doi.org/10.1186/s10020-025-01187-5
  8. Sci Adv. 2025 Apr 11. 11(15): eads3506
      Solute carrier (SLC) family is essential for immune responses; nevertheless, whether and how SLCs regulate macrophage inflammation remains unclear. Here, we demonstrate that K636 acetylation mediates high abundance of SLC6A14 in inflammatory macrophages. Notably, the pharmacological inhibition or genetic modulation of SLC6A14 reduces macrophage interleukin-1β (IL-1β) secretion dependently of lower asparagine uptake and subsequently enhanced nuclear LKB1. Mechanistically, nuclear LKB1 lessens MAPK pathway-mediated NLRP3 inflammasome activation by increased histone 3 S10/28 phosphorylation-dependent cyclin O transcription. Moreover, myeloid Slc6a14 deficiency alleviates pulmonary inflammation via suppressing inflammatory macrophage responses. Overall, these results uncover a network by which SLC6A14-mediated asparagine uptake orchestrates macrophage inflammation through histone phosphorylation, providing a crucial target for modulation of inflammatory diseases.
    DOI:  https://doi.org/10.1126/sciadv.ads3506
  9. Cell Rep Med. 2025 Apr 02. pii: S2666-3791(25)00152-1. [Epub ahead of print] 102079
      Macrophages eliminate apoptotic cells produced daily in the body through efferocytosis. Restricted clearance can cause inflammation-related diseases. In intervertebral discs (IVDs), apoptotic nucleus pulposus cells (NPCs) are difficult to effectively remove, and their accumulation can cause changes in the inflammatory microenvironment, disrupt IVD homeostasis, and lead to IVD degeneration (IDD). Here, we present chimeric antigen receptor-M-like engineered macrophages (CAR-eMs) with enhanced efferocytosis capacity for IDD treatment. Macrophages undergo phenotypic transformation and a reduction in phagocytic ability after phagocyting apoptotic NPCs, but their efferocytosis capacity recovers with upregulated brain-specific angiogenesis inhibitor 1 (BAI1) expression. We develop a CAR-eM system with enhanced BAI1 expression and an IVD circular microneedle (MN) delivery system that utilizes arrays of MNs to deliver CAR-eMs into the deep IVD layers, thereby clearing apoptotic NPCs, ameliorating the inflammatory microenvironment, and repairing damaged IVDs. Our study explores the therapeutic potential of CAR-eM efferocytosis for IDD treatment.
    Keywords:  BAI1; CAR-M; apoptosis; efferocytosis; inflammation; intervertebral disc degeneration; macrophage therapy; microneedle delivery; nucleus pulposus
    DOI:  https://doi.org/10.1016/j.xcrm.2025.102079