bims-tricox Biomed News
on Translation, ribosomes and COX
Issue of 2024–01–07
three papers selected by
Yash Verma, University of Zurich



  1. Curr Opin Microbiol. 2023 Dec 29. pii: S1369-5274(23)00155-8. [Epub ahead of print]77 102418
      Sensing small molecules is crucial for microorganisms to adapt their genetic programs to changes in their environment. Arrest peptides encoded by short regulatory open reading frames program the ribosomes that translate them to undergo translational arrest in response to specific metabolites. Ribosome stalling in turn controls the expression of downstream genes on the same messenger RNA by translational or transcriptional means. In this review, we present our current understanding of the mechanisms by which ribosomes translating arrest peptides sense different metabolites, such as antibiotics or amino acids, to control gene expression.
    DOI:  https://doi.org/10.1016/j.mib.2023.102418
  2. Sci Rep. 2024 Jan 04. 14(1): 546
      Selective degradation of dysfunctional or excess mitochondria is a fundamental process crucial for cell homeostasis in almost all eukaryotes. This process relies on autophagy, an intracellular self-eating system conserved from yeast to humans and is thus called mitophagy. Detailed mechanisms of mitophagy remain to be fully understood. Here we show that mitochondrial degradation in budding yeast, which requires the pro-mitophagic protein Atg32, is strongly reduced in cells lacking Egd1, a beta subunit of the nascent polypeptide-associated complex acting in cytosolic ribosome attachment and protein targeting to mitochondria. By contrast, loss of the sole alpha subunit Egd2 or the beta subunit paralogue Btt1 led to only a partial or slight reduction in mitophagy. We also found that phosphorylation of Atg32, a crucial step for priming mitophagy, is decreased in the absence of Egd1. Forced Atg32 hyperphosphorylation almost completely restored mitophagy in egd1-null cells. Together, we propose that Egd1 acts in Atg32 phosphorylation to facilitate mitophagy.
    DOI:  https://doi.org/10.1038/s41598-023-50245-7